Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(28): 35925-35935, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950334

RESUMO

The development of efficient theranostic nanoagents for the precise diagnosis and targeted therapy of glioblastoma (GBM) remains a big challenge. Herein, we designed and developed porphyrin-based organic nanoparticles (PNP NPs) with strong emission in the near-infrared IIa window (NIR-IIa) for orthotopic GBM theranostics. PNP NPs possess favorable photoacoustic and photothermal properties, high photostability, and low toxicity. After modification with the RGD peptide, the obtained PNPD NPs exhibited enhanced blood-brain barrier (BBB) penetration capability and GBM targeting ability. NIR-IIa imaging was employed to monitor the in vivo biodistribution and accumulation of the nanoparticles, revealing a significant enhancement in penetration depth and signal-to-noise ratio. Both in vitro and in vivo results demonstrated that PNPD NPs effectively inhibited the proliferation of tumor cells and induced negligible side effects in normal brain tissues. In general, the work presented a kind of brain-targeted porphyrin-based NPs with NIR-IIa fluorescence for orthotopic glioblastoma theranostics, showing promising prospects for clinical translation.


Assuntos
Glioblastoma , Nanopartículas , Porfirinas , Nanomedicina Teranóstica , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Animais , Nanopartículas/química , Humanos , Porfirinas/química , Porfirinas/farmacologia , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Raios Infravermelhos , Distribuição Tecidual , Barreira Hematoencefálica/metabolismo , Camundongos Nus , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fluorescência
2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430949

RESUMO

Organic nanomaterials have attracted considerable attention in the area of photodynamic and photothermal therapy, owing to their outstanding biocompatibility, potential biodegradability, well-defined chemical structure, and easy functionalization. However, it is still a challenge to develop a single organic molecule that obtains both photothermal and photodynamic effects. In this contribution, we synthesized a new boron-dipyrromethene (BODIPY)-based derivative (DPBDP) with an acceptor-donor-acceptor (A-D-A) structure by coupling 3,6-di(2-thienyl)-2,5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione (DPP) and BODIPY. To enhance the hydrophilicity of the BODIPY derivative, the polyethylene glycol (PEG) chains were introduced to the meso- position of BODIPY core. The amphiphilic DPBDP was then self-assembled into related nanoparticles (DPBDP NPs) with improved hydrophilicity and enhanced absorbance in the NIR region. DPBDP NPs could simultaneously generate the singlet oxygen (1O2) and heat under the irradiation of a single laser (690 nm). The 1O2 quantum yield and photothermal conversion efficiency (PCE) of DPBDP NPs were calculated to be 14.2% and 26.1%, respectively. The biocompatibility and phototherapeutic effect of DPBDP NPs were evaluated through cell counting kit-8 (CCK-8) assay. Under irradiation of 690 nm laser (1.0 W/cm2), the half maximal inhibitory concentration (IC50) of DPBDP NPs was calculated to be 16.47 µg/mL. Thus, the as-prepared DPBDP NPs could be acted as excellent candidates for synergistic photodynamic/photothermal therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Boro , Células HeLa , Nanopartículas/química , Neoplasias/tratamento farmacológico
3.
Nat Commun ; 13(1): 4825, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974004

RESUMO

Major depressive disorder is one of the most common mental health conditions. Meningeal lymphatics are essential for drainage of molecules in the cerebrospinal fluid to the peripheral immune system. Their potential role in depression-like behaviour has not been investigated. Here, we show in mice, sub-chronic variable stress as a model of depression-like behaviour impairs meningeal lymphatics in females but not in males. Manipulations of meningeal lymphatics regulate the sex difference in the susceptibility to stress-induced depression- and anxiety-like behaviors in mice, as well as alterations of the medial prefrontal cortex and the ventral tegmental area, brain regions critical for emotional regulation. Together, our findings suggest meningeal lymphatic impairment contributes to susceptibility to stress in mice, and that restoration of the meningeal lymphatics might have potential for modulation of depression-like behaviour.


Assuntos
Transtorno Depressivo Maior , Vasos Linfáticos , Animais , Feminino , Sistema Linfático , Vasos Linfáticos/fisiologia , Masculino , Meninges , Camundongos , Caracteres Sexuais , Estresse Psicológico
4.
Front Mol Neurosci ; 15: 886916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663269

RESUMO

Neuropathic pain is a chronic debilitating condition with a high comorbidity with depression. Clinical reports and animal studies have suggested that both the medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) are critically implicated in regulating the affective symptoms of neuropathic pain. Neuropathic pain induces differential long-term structural, functional, and biochemical changes in both regions, which are thought to be regulated by multiple waves of gene transcription. However, the differences in the transcriptomic profiles changed by neuropathic pain between these regions are largely unknown. Furthermore, women are more susceptible to pain and depression than men. The molecular mechanisms underlying this sexual dimorphism remain to be explored. Here, we performed RNA sequencing and analyzed the transcriptomic profiles of the mPFC and ACC of female and male mice at 2 weeks after spared nerve injury (SNI), an early time point when the mice began to show mild depressive symptoms. Our results showed that the SNI-induced transcriptomic changes in female and male mice were largely distinct. Interestingly, the female mice exhibited more robust transcriptomic changes in the ACC than male, whereas the opposite pattern occurred in the mPFC. Cell type enrichment analyses revealed that the differentially expressed genes involved genes enriched in neurons, various types of glia and endothelial cells. We further performed gene set enrichment analysis (GSEA), which revealed significant de-enrichment of myelin sheath development in both female and male mPFC after SNI. In the female ACC, gene sets for synaptic organization were enriched, and gene sets for extracellular matrix were de-enriched after SNI, while such signatures were absent in male ACC. Collectively, these findings revealed region-specific and sexual dimorphism at the transcriptional levels induced by neuropathic pain, and provided novel therapeutic targets for chronic pain and its associated affective disorders.

5.
Small Methods ; 6(6): e2200255, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35522015

RESUMO

Nickel-rich layered oxides are one of the most promising cathode candidates for next-generation high-energy-density lithium-ion batteries. However, due to similar ion radius between Li+ and Ni2+ (0.76 and 0.69 Å), the Li+ /Ni2+ mixing phenomenon seriously hinders the migration of Li+ and increases kinetic barrier of Li+ diffusion, resulting in limited rate capability. In this work, the introduction of Ce4+ to effectively improve electrochemical properties of Ni-rich cathode materials is proposed. The LiNi0.8 Co0.15 Al0.05 O2 (LNCA) is modified with an additional precursor oxidization process using an appropriate amount of (NH4 )2 Ce(NO3 )6 . The Ce(NO3 )6 2- easily obtains electrons and generates reduction reactions, while Ni(OH)2 is prone to electron loss and oxidation reaction. The participation of (NH4 )2 Ce(NO3 )6 can promote the oxidation of Ni2+ to Ni3+ , thereby reducing the Li+ /Ni2+ mixing and increasing the structural stability of LNCA samples. Ce4+ cation doping can impede Li+ /Ni2+ mixing of LNCA cathode materials upon the long-term cycles. Both rate performance and long-term cyclability of Li[Ni0.8 Co0.15 Al0.05 ]0.97 Ce0.03 O2 (LNCA-Ce0.03) sample are significantly improved. Besides, a practical pouch cell based on the cathode presents sufficient gravimetric energy density (≈300 Wh kg-1 ) and cycling stability (capacity retention of 81.3% after 500 cycles at 1 C).

6.
Photochem Photobiol Sci ; 19(7): 905-912, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369050

RESUMO

Photodynamic therapy (PDT) has been extensively explored for malignant tissue treatment. In this work, we successfully synthesized and characterized a series of porphyrin compounds by connecting porphyrin units with alkyl chains, which were then coordinated with palladium to yield related metal complexes, named Pd-Monopor, Pd-Dipor, and Pd-Tripor, respectively. The generation of reactive oxygen species (ROS) of six porphyrin compounds was investigated by the dichlorofluorescein (DCFH) method. As expected, the palladium porphyrin complexes showed the higher efficiency of ROS generation relative to free base porphyrins, probably due to the heavy atom effect. Remarkably, the efficiency of ROS generation increased with the number of porphyrin units in the photosensitizers. The order of ROS generation efficiency of the synthesized porphyrins was Pd-Tripor > Tripor > Dipor > Pd-Monopor > Pd-Dipor > Monopor. MTT assay suggested the good biocompatibility of the synthesized photosensitizers in the dark. Upon light irradiation, the palladium porphyrin complex exhibited higher therapeutic activity than free base porphyrin. The half-maximal inhibitory concentration (IC50) of Tripor and Pd-Tripor under light irradiation was calculated to be 18.2 and 9.6 µM, respectively. The cellular uptake and subcellular localization experiments indicated that Tripor was mainly localized in the lysosomes of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Paládio/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Paládio/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/análise
7.
Bioconjug Chem ; 31(3): 663-672, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31884782

RESUMO

Light-activated phototherapy, including photothermal and photodynamic therapy, has become a new way for spatiotemporal control and noninvasive treatment of cancer. In this study, two new organic porphyrin molecules (NI-Por and NI-ZnPor) with donor (D)-acceptor (A) structure were designed and synthesized. The donor-acceptor pairs facilitated the intermolecular electron transfer, resulting in the enhancement of near-infrared (NIR) absorbance and nonradiative heat generation. After self-assembling, the nanoparticles were formed with the size around 60 nm. Relative to that of organic molecules, the absorption of NI-Por NPs and NI-ZnPor NPs broadened and red-shifted to the near-infrared region. Moreover, the porphyrin-containing nanoparticles can generate heat and reactive oxygen species (ROS) simultaneously induced by a single laser (635 nm). The intracellular reactive oxygen species production of NI-Por NPs and NI-ZnPor NPs was confirmed using DCFH-DA as an indicator. Furthermore, the localization of NI-Por NP and NI-ZnPor NP in HeLa cells was verified by fluorescence confocal laser microscopy. The photocytoxicity of two nanoparticles against HeLa cells was evaluated through the CCK-8 method. The IC50 of NI-Por NPs and NI-ZnPor NPs upon 635 nm laser irradiation was calculated to be 6.92 µg/mL and 5.86 µg/mL, respectively. Furthermore, the PDT/PTT synergistic effect of NPs under a 635 nm laser was verified through different treatment groups in vitro. All these results demonstrated that the as-prepared porphyrin-based nanoparticles are promising nanoagents for PDT/PTT in clinic.


Assuntos
Nanoestruturas/química , Naftalimidas/química , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Porfirinas/química , Porfirinas/farmacologia , Células HeLa , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Porfirinas/uso terapêutico , Oxigênio Singlete/metabolismo
8.
Org Biomol Chem ; 18(3): 569, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31858091

RESUMO

Correction for 'A folate-conjugated platinum porphyrin complex as a new cancer-targeting photosensitizer for photodynamic therapy' by Mengqian Yang et al., Org. Biomol. Chem., 2019, 17, 5367-5374.

9.
Org Biomol Chem ; 17(21): 5367-5374, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31106316

RESUMO

A new folate-conjugated platinum porphyrin complex (Por 4) was synthesized and characterized. The singlet oxygen production of the conjugates was evaluated through a 1,3-diphenylisobenzofuran method. The targeting ability and subcellular localization of Por 4 were confirmed by confocal laser scanning microscopy in HeLa cells (overexpression of FR) as well as in A549 cells (low expression of FR). The results suggested that the modification of the carboxyl group with a porphyrin compound did not decrease the binding affinity of folic acid to FR positive cancer cells. Moreover, the MTT assay using HeLa cells and A549 cells verified the low cytotoxicity of Por 4 in the dark. Upon irradiation, Por 4 showed noticeable improvement in toxicity against cancer cells with the overexpression of FR. Upon the treatment of Por 4 at the concentration of 20 µM, the cell viability was determined as 22% and 75% for HeLa and A549 cells, respectively, indicating that the folate-conjugated platinum porphyrin complex could be a promising PDT agent for cancer with overexpression of the folate receptor.


Assuntos
Antineoplásicos/farmacologia , Ácido Fólico/farmacologia , Compostos Organoplatínicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Platina/farmacologia , Porfirinas/farmacologia , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Fólico/química , Células HeLa , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Platina/química , Porfirinas/química , Oxigênio Singlete/análise , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
J Biol Inorg Chem ; 24(1): 53-60, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30349943

RESUMO

Photodynamic therapy (PDT) is a promising cancer treatment approach with the advantages of low toxicity and noninvasive characteristics. In this study, a series of metalloporphyrin-indomethacin conjugates tethered with poly(ethylene glycol) (PEG) chains were prepared and characterized. The singlet oxygen production of the conjugates was evaluated through 2', 7'-dichlorofluorescin (DCFH) method. Because of the heavy atom effect, the metal porphyrin complexes exhibited the higher singlet oxygen (1O2) quantum yield than that of free base porphyrin. The order of 1O2 yield of the synthesized porphyrins was PtPor > PdPor > ZnPor > Por. The MTT assay using HeLa cells verified the low cytotoxicity of porphyrin-indomethacin conjugates in the dark. Upon irradiation, the platinated porphyrin (PtPor) showed the highest therapeutic activity among these conjugates, probably due to its high efficiency of 1O2 generation. The cellular uptake and subcellular localization of the conjugates were further evaluated through a confocal laser scanning microscope. The results showed that the conjugates were primarily localized in the lysosomes of HeLa cells.


Assuntos
Indometacina/análogos & derivados , Metaloporfirinas/química , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Indometacina/farmacologia , Metaloporfirinas/farmacologia , Neoplasias/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Oxigênio Singlete/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA