Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
1.
Hortic Res ; 11(6): uhae121, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919561

RESUMO

Root-associated microbiomes play a crucial role in plant responses to biotic and abiotic stresses. Plants can enrich beneficial microbes to increase their stress-relieving ability. Above-ground insect herbivory is among the most detrimental stresses for plants, especially to crop production. However, few studies have explored how root-associated microbiomes respond to herbivores and influence plant-defense functions under herbivory stress. We investigate the changes and functional role of root-associated microbial communities under herbivory stress using leafminer (Liriomyza trifolii) and cowpea (Vigna unguiculata) as a focal system. We did this by using a combination of 16S ribosomal RNA gene profiling and metagenomic sequencing to test for differences in co-occurrence networks and functions between cowpea plants infested and noninfested with leafminers. The results demonstrated that leafminer infestation caused a shift in the rhizosphere microbiome, which was characterized by a significant variation in microbiome community structure and composition, the selection of hub microbes involved in nitrogen (N) metabolism, and functional enrichment related to N metabolism. Notably, nitrogen-fixing bacteria Bradyrhizobium species were actively enriched and selected to be hubs in the rhizosphere. Inoculation with Bradyrhizobium enhanced cowpea performance under leafminer stress and increased protease inhibitor levels to decrease leafminer fitness. Overall, our study characterized the changes of root-associated microbiota between leafminer-infested and noninfested cowpea plants and revealed the mechanisms underlying the rhizosphere microbiome shift that enhance plant performance and defense against herbivory. Our findings provide further support for the notion that plants enrich rhizosphere microbes to counteract aboveground insect herbivores.

2.
J Econ Entomol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935037

RESUMO

Aphids (Hemiptera: Aphidoidea) are economically important crop pests worldwide. Because of growing issues with insecticide resistance and environmental contamination by insecticides, alternate methods are being explored to provide aphid control. Aphids contain endosymbiotic bacteria that affect host fitness and could be targeted as potential biocontrol agents, but such novel strategies should not impact the effectiveness of traditional chemical control. In this work, we used a novel endosymbiont transinfection to examine the impact of the endosymbiont Rickettsiella viridis on chemical tolerance in 3 important agricultural pest species of aphid: Myzus persicae (Sulzer) (Hemiptera: Aphididae), Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae), and Diuraphis noxia (Mordvilko ex Kurdjumov) (Hemiptera: Aphididae). We tested tolerance to the commonly used insecticides alpha-cypermethrin, bifenthrin, and pirimicarb using a leaf-dip bioassay. We found no observed effect of this novel endosymbiont transinfection on chemical tolerance, suggesting that the strain of Rickettsiella tested here could be used as a biocontrol agent without affecting sensitivity to insecticides. This may allow Rickettsiella transinfections to be used in combination with chemical applications for pest control. The impacts of other endosymbionts on insecticide tolerance should be considered, along with tests on multiple aphid clones with different inherent levels of chemical tolerance.

3.
Mater Today Bio ; 26: 101094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38854952

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.

4.
Crit Rev Biotechnol ; : 1-17, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710624

RESUMO

Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.

5.
Anim Genet ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806279

RESUMO

Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.

6.
JAMA Netw Open ; 7(5): e2412824, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776079

RESUMO

Importance: Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective: To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants: This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures: The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results: In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75 024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions: These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.


Assuntos
Pressão Sanguínea , Doenças de Pequenos Vasos Cerebrais , Demência , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Feminino , Masculino , Idoso , Demência/genética , Demência/epidemiologia , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/epidemiologia , Fatores de Risco , Predisposição Genética para Doença , Idoso de 80 Anos ou mais , Estudos Prospectivos
7.
J Bioenerg Biomembr ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720136

RESUMO

Vesicle-associated membrane protein 8 (VAMP8), a soluble n-ethylmaleimide-sensitive factor receptor protein, acts as an oncogenic gene in the progression of several malignancies. Nevertheless, the roles and mechanisms of VAMP8 in colorectal cancer (CRC) progression remain unknown. The expression and prognostic significance of VAMP8 in CRC samples were analyzed through bioinformatics analyses. Cell proliferation was detected using CCK-8 and EdU incorporation assays and apoptosis was evaluated via flow cytometry. Western blot analysis was conducted to examine the protein expression. Ferroptosis was evaluated by measurement of iron metabolism, lipid peroxidation, and glutathione (GSH) content. VAMP8 was increased in CRC samples relative to normal samples on the basis of GEPIA and HPA databases. CRC patients with high level of VAMP8 had a worse overall survival. VAMP8 depletion led to a suppression of proliferation and promotion of apoptosis in CRC cells. Additionally, VAMP8 knockdown suppressed beclin1 expression and LC3-II/LC3-I ratio, elevated p62 expression, increased Fe2+, labile iron pool, lipid reactive oxygen species, and malondialdehyde levels, and repressed GSH content and glutathione peroxidase activity. Moreover, VAMP8 knockdown inhibited the activation of janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in CRC cells. Mechanistically, activation of the JAK/STAT3 pathway by JAK1 or JAK2 overexpression attenuated VAMP8 silencing-mediated anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on CRC cells. In conclusion, VAMP8 knockdown affects the proliferation, apoptosis, autophagy, and ferroptosis by the JAK/STAT3 pathway in CRC cells.

8.
Cureus ; 16(4): e58947, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800214

RESUMO

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) outcomes in small centers are commonly considered less favorable than in large-volume centers. New ECMO protocols and procedures were established in our regional community hospital system as part of a cardiogenic shock initiative. This retrospective study aims to evaluate the outcomes of veno-arterial extracorporeal membrane oxygenation (VA ECMO) and extracorporeal cardiopulmonary resuscitation (ECPR) in a community hospital system with cardiac surgery capability and assess whether protocol optimization and cannulation standards result in comparable outcomes to larger centers whether the outcomes of this new ECMO program at the community hospital setting were comparable to the United States averages. METHODS: Our regional system comprises five hospitals with 1500 beds covering southwestern New Jersey, with only one of these hospitals having cardiac surgery and ECMO capability. In May 2021, the new ECMO program was initiated. Patients were screened by a multidisciplinary call, cannulated by our ECMO team, and subsequently treated by the designated team. We reviewed our cardiac ECMO outcomes over two years, from May 2021 to April 2023, in patients who required ECMO due to cardiogenic shock or as a part of extracorporeal cardiopulmonary resuscitation (ECPR). RESULTS: A total of 60 patients underwent cardiac ECMO, and all were VA ECMO, including 18 (30%) patients who required ECPR for cardiac arrest. The overall survival rate for our cardiac ECMO program turned out to be 48% (29/60), with 50% (22/42) in VA ECMO excluding ECPR and 39% (7/18) in the ECPR group. The hospital survival rate for the VA ECMO and ECPR groups was 36% (15/42) and 28% (5/18), respectively. The ELSO-reported national average for hospital survival is 48% for VA ECMO and 30% for ECPR. Considering these benchmarks, the hospital survival rate of our program did not significantly lag behind the national average. CONCLUSIONS: With protocol, cannulation standards, and ECMO management optimized, the VA ECMO results of a community hospital system with cardiac surgery capability were not inferior to those of larger centers.

9.
J Econ Entomol ; 117(3): 951-962, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733331

RESUMO

Predatory mites biologically control a range of arthropod crop pests and are often central to agricultural IPM strategies globally. Conflict between chemical and biological pest control has prompted increasing interest in selective pesticides with fewer off-target impacts on beneficial invertebrates, including predatory mites. However, the range of predatory mite species included in standardized pesticide toxicity assessments does not match the diversity of naturally occurring species contributing to biocontrol, with most testing carried out on species from the family Phytoseiidae (Mesostigmata). Here, we aim to bridge this knowledge gap by investigating the impacts of 22 agricultural pesticides on the predatory snout mite, Odontoscirus lapidaria (Kramer) (Trombidiformes: Bdellidae). Using internationally standardized testing methodologies, we identified several active ingredients with minimal impact on O. lapidaria mortality, including Bacillus thuringiensis, nuclear polyhedrosis virus, flonicamid, afidopyropen, chlorantraniliprole, and cyantraniliprole, which may therefore be good candidates for IPM strategies utilizing both chemical and biological control. Comparison of our findings with previous studies on Phytoseiid mites reveals important differences in responses to a number of chemicals between predatory mite families, including the miticides diafenthiuron and abamectin, highlighting the risk of making family-level generalizations from acute toxicity assessments. We also tested the impacts of several pesticides on a second Bdellidae species (Trombidiformes: Bdellidae) and found differences in the response to chlorpyrifos compared with O. lapidaria, further highlighting the taxon-specific nature of nontarget toxicity effects.


Assuntos
Ácaros , Animais , Ácaros/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Controle Biológico de Vetores , Testes de Toxicidade Aguda , Acaricidas/toxicidade , Praguicidas/toxicidade
10.
BMC Ecol Evol ; 24(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600505

RESUMO

Leaf traits were affected by soil factors and displayed varietal differences in forest. However, few examples have been reported on the Island ecosystems. We comprehensively investigated 9 leaf traits (leaf length, leaf width, leaf area, SLA, leaf fresh weight, leaf C content, leaf N content, leaf K content, leaf C:N ratio) of 54 main subtropical woody species and soil parameters (soil pH, total C content, total N content, total K content, available N content, available P content, available K content and soil moisture) in Neilingding Island, Shenzhen, southern China. Intra-and interspecific variation of leaf traits were measured and their correlations with soil parameters were explored. The interspecific variations of leaf C:N ratio, leaf N content and leaf fresh weight were higher than their intraspecific variations. The intraspecific variation of leaf K content was larger than that of interspecific one, accounting for 80.69% of the total variance. Positive correlations were found among intraspecific coefficients of variations in leaf morphological traits. The correlation analysis between the variation of intraspecific traits and the variation of soil parameters showed that changes in soil factors affected leaf morphology and stoichiometry. The interaction between soil moisture and soil available P content was the key factor on intraspecific variations of leaf traits including leaf area, leaf fresh weight, leaf C and leaf K content. We concluded that leaf traits of plants in the island were tightly related to soil parameters. Soil parameters, especially soil moisture and available P content, affected plant leaf morphology and stoichiometry at the local scale.


Assuntos
Ecossistema , Solo , Solo/química , Florestas , Folhas de Planta/anatomia & histologia , China
11.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556880

RESUMO

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Assuntos
Bombyx , Nosema , Animais , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiologia , Perfilação da Expressão Gênica , Proliferação de Células , Lipídeos , Bombyx/genética
12.
Front Pharmacol ; 15: 1270661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659586

RESUMO

Background: Bufei Huoxue capsule (BFHX) is widely used for the clinical treatment of chronic obstructive pulmonary disease (COPD) in China. Objectives: The aim of this study is to explore the effects on COPD and the underlying mechanism of BFHX. The process and methods: In this study, we established a COPD mouse model through cigarette smoke (CS) exposure in combination with lipopolysaccharide (LPS) intratracheal instillation. Subsequently, BFHX was orally administrated to COPD mice, and their pulmonary function, lung pathology, and lung inflammation, including bronchoalveolar lavage fluid (BALF) cell count and classification and cytokines, were analyzed. In addition, the anti-oxidative stress ability of BFHX was detected by Western blotting, and the bacterial diversity, abundance, and fecal microbiome were examined using 16S rRNA sequencing technology. Outcome: BFHX was shown to improve pulmonary function, suppress lung inflammation, decrease emphysema, and increase anti-oxidative stress, whereas 16S rRNA sequencing indicated that BFHX can dynamically regulate the diversity, composition, and distribution of the intestinal flora microbiome and regulate the lysine degradation and phenylalanine metabolism of COPD mice. These results highlight another treatment option for COPD and provide insights into the mechanism of BFHX.

13.
Biomedicines ; 12(4)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38672165

RESUMO

Stroke and dementia have been linked to the appearance of white matter hyperintensities (WMHs). Meanwhile, diffusion tensor imaging (DTI) might capture the microstructural change in white matter early. Specific dietary interventions may help to reduce the risk of WMHs. However, research on the relationship between specific nutrients and white matter changes is still lacking. We aimed to investigate the causal effects of essential nutrients (amino acids, fatty acids, mineral elements, and vitamins) on WMHs and DTI measures, including fraction anisotropy (FA) and mean diffusivity (MD), by a Mendelian randomization analysis. We selected single nucleotide polymorphisms (SNPs) associated with each nutrient as instrumental variables to assess the causal effects of nutrient-related exposures on WMHs, FA, and MD. The outcome was from a recently published large-scale European Genome Wide Association Studies pooled dataset, including WMHs (N = 18,381), FA (N = 17,663), and MD (N = 17,467) data. We used the inverse variance weighting (IVW) method as the primary method, and sensitivity analyses were conducted using the simple median, weighted median, and MR-Egger methods. Genetically predicted serum calcium level was positively associated with WMHs risk, with an 8.1% increase in WMHs risk per standard deviation unit increase in calcium concentration (OR = 1.081, 95% CI = 1.006-1.161, p = 0.035). The plasma linoleic acid level was negatively associated with FA (OR = 0.776, 95% CI = 0.616-0.978, p = 0.032). Our study demonstrated that genetically predicted calcium was a potential risk factor for WMHs, and linoleic acid may be negatively associated with FA, providing evidence for interventions from the perspective of gene-environment interactions.

14.
In Vivo ; 38(3): 1192-1198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688651

RESUMO

BACKGROUND/AIM: Probing brain tumor microvasculature holds significant importance in both basic cancer research and medical practice for tracking tumor development and assessing treatment outcomes. However, few imaging methods commonly used in clinics can noninvasively monitor the brain microvascular network at high precision and without exogenous contrast agents in vivo. The present study aimed to investigate the characteristics of microvasculature during brain tumor development in an orthotopic glioma mouse model. MATERIALS AND METHODS: An orthotopic glioma mouse model was established by surgical orthotopic implantation of U87-MG-luc cells into the mouse brain. Then, optical coherence tomography angiography (OCTA) was utilized to characterize the microvasculature progression within 14 days. RESULTS: The orthotopic glioma mouse model evaluated by bioluminescence imaging and MRI was successfully generated. As the tumor grew, the microvessels within the tumor area slowly decreased, progressing from the center to the periphery for 14 days. CONCLUSION: This study highlights the potential of OCTA as a useful tool to noninvasively visualize the brain microvascular network at high precision and without any exogenous contrast agents in vivo.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Tomografia de Coerência Óptica , Animais , Tomografia de Coerência Óptica/métodos , Camundongos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Linhagem Celular Tumoral , Humanos , Microvasos/diagnóstico por imagem , Microvasos/patologia , Imageamento por Ressonância Magnética/métodos , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/patologia , Angiografia/métodos
15.
Signal Transduct Target Ther ; 9(1): 95, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653979

RESUMO

Bietti crystalline corneoretinal dystrophy is an inherited retinal disease caused by mutations in CYP4V2, which results in blindness in the working-age population, and there is currently no available treatment. Here, we report the results of the first-in-human clinical trial (NCT04722107) of gene therapy for Bietti crystalline corneoretinal dystrophy, including 12 participants who were followed up for 180-365 days. This open-label, single-arm exploratory trial aimed to assess the safety and efficacy of a recombinant adeno-associated-virus-serotype-2/8 vector encoding the human CYP4V2 protein (rAAV2/8-hCYP4V2). Participants received a single unilateral subretinal injection of 7.5 × 1010 vector genomes of rAAV2/8-hCYP4V2. Overall, 73 treatment-emergent adverse events were reported, with the majority (98.6%) being of mild or moderate intensity and considered to be procedure- or corticosteroid-related; no treatment-related serious adverse events or local/systemic immune toxicities were observed. Compared with that measured at baseline, 77.8% of the treated eyes showed improvement in best-corrected visual acuity (BCVA) on day 180, with a mean ± standard deviation increase of 9.0 ± 10.8 letters in the 9 eyes analyzed (p = 0.021). By day 365, 80% of the treated eyes showed an increase in BCVA, with a mean increase of 11.0 ± 10.6 letters in the 5 eyes assessed (p = 0.125). Importantly, the patients' improvement observed using multifocal electroretinogram, microperimetry, and Visual Function Questionnaire-25 further supported the beneficial effects of the treatment. We conclude that the favorable safety profile and visual improvements identified in this trial encourage the continued development of rAAV2/8-hCYP4V2 (named ZVS101e).


Assuntos
Distrofias Hereditárias da Córnea , Família 4 do Citocromo P450 , Dependovirus , Terapia Genética , Doenças Retinianas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/terapia , Distrofias Hereditárias da Córnea/patologia , Dependovirus/genética , Família 4 do Citocromo P450/genética , Vetores Genéticos/genética , Acuidade Visual
16.
Clin Immunol ; 263: 110223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636890

RESUMO

Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.


Assuntos
Anemia Aplástica , Linfócitos T CD8-Positivos , Proteínas Ligadas por GPI , Células-Tronco Hematopoéticas , Interleucina-15 , Monócitos , Receptores de IgG , Humanos , Anemia Aplástica/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Interleucina-15/farmacologia , Interleucina-15/imunologia , Receptores de IgG/metabolismo , Receptores de IgG/imunologia , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Feminino , Masculino , Adulto , Células-Tronco Hematopoéticas/imunologia , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/imunologia , Pessoa de Meia-Idade , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/imunologia , Adulto Jovem , Adolescente , Interferon gama/imunologia , Interferon gama/metabolismo , Receptores de Interleucina-15/metabolismo , Receptores de Interleucina-15/imunologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/imunologia
17.
Arch Microbiol ; 206(5): 237, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678508

RESUMO

Invasive fungal infections (IFIs) are common and life-threatening complications in post-hematopoietic stem cell transplantation (post-HSCT) recipients, Severe IFIs can lead to systemic infection and organ damage, which results in high mortality in HSCT recipients. With the development of the field of fungal infection diagnosis, more and more advanced non-culture diagnostic tools have been developed, such as glip biosensors, metagenomic next-generation sequencing, Magnetic Nanoparticles and Identified Using SERS via AgNPs+ , and artificial intelligence-assisted diagnosis. The advanced diagnostic approaches contribute to the success of HSCT and improve the overall survival of post-HSCT leukemia patients by supporting therapeutical decisions. This review provides an overview of the characteristics of two high-incidence IFIs in post-HSCT recipients and discusses some of the recently developed IFI detection technologies. Additionally, it explores the potential application of cationic conjugated polymer fluorescence resonance energy transfer (CCP-FRET) technology for IFI detection. The aim is to offer insights into selecting appropriate IFI detection methods and gaining an understanding of novel fungal diagnostic approaches in laboratory settings.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Infecções Fúngicas Invasivas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Infecções Fúngicas Invasivas/diagnóstico , Transferência Ressonante de Energia de Fluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas Biossensoriais/métodos
18.
Chemosphere ; 362: 142117, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670501

RESUMO

The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT = 4 h and nano-MgO dosage = 0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.

19.
Chemistry ; 30(33): e202400629, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38594211

RESUMO

Herein, we synthesized two donor-acceptor (D-A) type small organic molecules with self-assembly properties, namely MPA-BT-BA and MPA-2FBT-BA, both containing a low acidity anchoring group, benzoic acid. After systematically investigation, it is found that, with the fluorination, the MPA-2FBT-BA demonstrates a lower highest occupied molecular orbital (HOMO) energy level, higher hole mobility, higher hydrophobicity and stronger interaction with the perovskite layer than that of MPA-BT-BA. As a result, the device based-on MPA-2FBT-BA displays a better crystallization and morphology of perovskite layer with larger grain size and less non-radiative recombination. Consequently, the device using MPA-2FBT-BA as hole transport material achieved the power conversion efficiency (PCE) of 20.32 % and remarkable stability. After being kept in an N2 glove box for 116 days, the unsealed PSCs' device retained 93 % of its initial PCE. Even exposed to air with a relative humidity range of 30±5 % for 43 days, its PCE remained above 91 % of its initial condition. This study highlights the vital importance of the fluorination strategy combined with a low acidity anchoring group in SAMs, offering a pathway to achieve efficient and stable PSCs.

20.
Sci Data ; 11(1): 279, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459048

RESUMO

The yellow stem borer Scirpophaga incertulas is the dominant pest of rice in tropical Asia. However, the lack of genomic resources makes it difficult to understand their invasiveness and ecological adaptation. A high-quality chromosome-level genome of S. incertulas, a monophagous rice pest, was assembled by combining Illumina short reads, PacBio HiFi long sequencing, and Hi-C scaffolding technology. The final genome size was 695.65 Mb, with a scaffold N50 of 28.02 Mb, and 93.50% of the assembled sequences were anchored to 22 chromosomes. BUSCO analysis demonstrated that this genome assembly had a high level of completeness, with 97.65% gene coverage. A total of 14,850 protein-coding genes and 366.98 Mb of transposable elements were identified. In addition, comparative genomic analyses indicated that chemosensory processes and detoxification capacity may play critical roles in the specialized host preference of S. incertulas. In summary, the chromosome-level genome assembly of S. incertulas provides a valuable genetic resource for understanding the biological characteristics of its invasiveness and developing an efficient management strategy.


Assuntos
Genoma de Inseto , Mariposas , Animais , Ásia , Cromossomos , Genômica , Mariposas/genética , Oryza , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA