Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biomed Pharmacother ; 178: 117237, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096616

RESUMO

The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.

2.
Int J Gen Med ; 17: 2593-2612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855424

RESUMO

Background: The specific cytotoxic effects of anti-CD19 chimeric antigen receptor (CAR) T-cell therapy have led to impressive outcomes in individuals previously treated for B-cell malignancies. However, the specific biological role of CD19(+) target cells, which exert antitumor immunity against some solid tumors, remains to be elucidated. Methods: We collected information regarding the level of CD19 mRNA and protein expression from various databases including The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) for both tumor and normal samples. To evaluate the patient's prognosis according to CD19 expression, a Kaplan-Meier (KM) analysis and univariate Cox regression were performed. Furthermore, using the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using the Expression Data (ESTIMATE) algorithm, we estimated the ratio of immune cells infiltrating malignant tumor tissues. Afterward, the GSCALite repository was employed to evaluate the vulnerability of tumors expressing CD19 to drugs used in chemotherapy. To validate the results in clinical samples of certain cancer types, immunohistochemistry was then performed. Results: Most tumor types exhibited CD19 expression differently, apart from colon adenocarcinoma (COAD). The early diagnostic value of CD19 has been demonstrated in 9 different tumor types, and the overexpression of CD19 has the potential to extend the survival duration of patients. Multiple tumors showed a positive correlation between CD19 expression and tumor mutation burden (TMB), microsatellite instability (MSI), and ESTIMATE score. Furthermore, a direct association was discovered between the expression of CD19 and the infiltration of immune cells, particularly in cases of breast invasive carcinoma (BRCA). Moreover, CD19 is highly sensitive to a variety of chemotherapy drugs. Conclusion: The study reveals the potential of CD19 as both a predictive biomarker and a target for different cancer immunotherapies.

3.
ACS Appl Mater Interfaces ; 16(25): 31922-31935, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874539

RESUMO

Poly-l-lysine (PLL) and Matrigel, both classical coating materials for culture substrates in neural stem cell (NSC) research, present distinct interfaces whose effect on NSC behavior at cellular and molecular levels remains ambiguous. Our investigation reveals intriguing disparities: although both PLL and Matrigel interfaces are hydrophilic and feature amine functional groups, Matrigel stands out with lower stiffness and higher roughness. Based on this diversity, Matrigel surpasses PLL, driving NSC adhesion, migration, and proliferation. Intriguingly, PLL promotes NSC differentiation into astrocytes, whereas Matrigel favors neural differentiation and the physiological maturation of neurons. At the molecular level, Matrigel showcases a wider upregulation of genes linked to NSC behavior. Specifically, it enhances ECM-receptor interaction, activates the YAP transcription factor, and heightens glycerophospholipid metabolism, steering NSC proliferation and neural differentiation. Conversely, PLL upregulates genes associated with glial cell differentiation and amino acid metabolism and elevates various amino acid levels, potentially linked to its support for astrocyte differentiation. These distinct transcriptional and metabolic activities jointly shape the divergent NSC behavior on these substrates. This study significantly advances our understanding of substrate regulation on NSC behavior, offering novel insights into optimizing and targeting the application of these surface coating materials in NSC research.


Assuntos
Diferenciação Celular , Proliferação de Células , Colágeno , Combinação de Medicamentos , Laminina , Células-Tronco Neurais , Polilisina , Proteoglicanas , Polilisina/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Laminina/química , Laminina/farmacologia , Colágeno/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteoglicanas/química , Proteoglicanas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos
4.
J Cell Mol Med ; 28(11): e18462, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847478

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Animais , Apoptose/genética , Fosforilação
5.
Mol Ther ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734897

RESUMO

Altered branched chain amino acids (BCAAs), including leucine, isoleucine, and valine, are frequently observed in patients with advanced cancer. We evaluated the efficacy of chimeric antigen receptor (CAR) T cell-mediated cancer cell lysis potential in the immune microenvironment of BCAA supplementation and deletion. BCAA supplementation increased cancer cell killing percentage, while accelerating BCAA catabolism and decreasing BCAA transporter decreased cancer cell lysis efficacy. We thus designed BCKDK engineering CAR T cells for the reprogramming of BCAA metabolism in the tumor microenvironment based on the genotype and phenotype modification. BCKDK overexpression (OE) in CAR-T cells significantly improved cancer cell lysis, while BCKDK knockout (KO) resulted in inferior lysis potential. In an in vivo experiment, BCKDK-OE CAR-T cell treatment significantly prolonged the survival of mice bearing NALM6-GL cancer cells, with the differentiation of central memory cells and an increasing proportion of CAR-T cells in the peripheral circulation. BCKDK-KO CAR-T cell treatment resulted in shorter survival and a decreasing percentage of CAR-T cells in the peripheral circulation. In conclusion, BCKDK-engineered CAR-T cells exert a distinct phenotype for superior anticancer efficiency.

6.
Brain Res Bull ; 212: 110969, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705540

RESUMO

Alzheimer's disease (AD) stands as the most prevalent neurodegenerative condition worldwide, and its correlation with microglial function is notably significant. Dl-3-n-butylphthalide (NBP), derived from the seeds of Apium graveolens L. (Chinese celery), has demonstrated the capacity to diminish Aß levels in the brain tissue of Alzheimer's transgenic mice. Despite this, its connection to neuroinflammation and microglial phagocytosis, along with the specific molecular mechanism involved, remains undefined. In this study, NBP treatment exhibited a substantial improvement in learning deficits observed in AD transgenic mice (APP/PS1 transgenic mice). Furthermore, NBP treatment significantly mitigated the total cerebral Aß plaque deposition. This effect was attributed to the heightened presence of activated microglia surrounding Aß plaques and an increase in microglial phagocytosis of Aß plaques. Transcriptome sequencing analysis unveiled the potential involvement of the AGE (advanced glycation end products) -RAGE (receptor for AGE) signaling pathway in NBP's impact on APP/PS1 mice. Subsequent investigation disclosed a reduction in the secretion of AGEs, RAGE, and proinflammatory factors within the hippocampus and cortex of NBP-treated APP/PS1 mice. In summary, NBP alleviates cognitive impairment by augmenting the number of activated microglia around Aß plaques and ameliorating AGE-RAGE-mediated neuroinflammation. These findings underscore the related mechanism of the crucial neuroprotective roles of microglial phagocytosis and anti-inflammation in NBP treatment for AD, offering a potential therapeutic target for the disease.


Assuntos
Doença de Alzheimer , Benzofuranos , Camundongos Transgênicos , Microglia , Fagocitose , Receptor para Produtos Finais de Glicação Avançada , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Benzofuranos/farmacologia , Camundongos , Fagocitose/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
7.
BMC Complement Med Ther ; 24(1): 67, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297292

RESUMO

OBJECTIVE: The main objectives of this study were to identify the active components of Tongguanteng injection (TGT) and investigate the preclinical efficacy and mechanism of TGT on osteosarcoma using a combination of network pharmacology and experimental validation. METHODS: To identify the active constituents and targets of TGT against osteosarcoma using network pharmacology, we constructed a network consisting of an 'active ingredient-disease-target-pathway' and a protein-protein interaction (PPI) network. The target organ network was utilized to investigate the distribution of core targets in tissues. Afterwards, the core targets underwent Gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The binding energy between receptors and ligands was compared using molecular docking. In addition, SwissADME was employed to forecast the pharmacokinetic characteristics of the substances. Finally, real-time polymerase chain reaction (RT-PCR), cell proliferation assay, morphological analysis, apoptosis assay, mitochondrial membrane potential (MMP) detection, and Western blotting were utilized to confirm the potential mechanisms of TGT treatment in osteosarcoma cell lines 143B and SAOS2. RESULTS: A total of 54 chemical constituents of TGT and 71 targets associated with osteosarcoma were acquired. Through the molecular docking technology, Tenacigenin B, Marsdekoiside, Taraxasterol, Tenacissoside G, Tenacissoside L, and Tenacissoside J were identified as the primary active components of TGT among the various compounds. Analysis of target organs suggests that TGT may play an anti-osteosarcoma role through immune regulation. The GO and KEGG enrichment analysis revealed that TGT could trigger osteosarcoma cell apoptosis by inhibiting the HIF-1 signalling pathway and modulating PD-1 expression and the PD-1 checkpoint pathway in cancer. SwissADME database predicted that Tenacigenin B and Taraxasterol had the best drug-likeness. In vitro studies also demonstrated that TGT suppressed the activity and induced alterations in the morphology of osteosarcoma cells. It decreased MMP levels, triggered apoptosis by increasing Bax expression and Caspase-3 activity, and decreased Bcl-2 expression, thereby exerting an anti-osteosarcoma effect. In the meantime, RT-PCR tests demonstrated that TGT could control immune response against tumors and hinder the proliferation and spread of cancerous cells by impacting the levels of critical factors, including JUN, HSP90AA1, HDAC1, and CDK1. CONCLUSION: The study accurately anticipated the active components, targets, and pathways of TGT in the management of osteosarcoma. The molecular mechanism of TGT-induced apoptosis in osteosarcoma cells was demonstrated by in vitro experiments. These results provide theoretical and technical support for TGT as a clinical adjuvant drug for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Esteróis , Triterpenos , Humanos , Farmacologia em Rede , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1 , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico
8.
J Enzyme Inhib Med Chem ; 39(1): 2290458, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059302

RESUMO

Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 µM and 1.86 µM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.


Assuntos
Doenças Metabólicas , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Fosforilação , Aminoácidos de Cadeia Ramificada/metabolismo
9.
Mol Nutr Food Res ; 68(14): e2300577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38150655

RESUMO

SCOPE: Branched chain amino acids (BCAAs) are essential amino acids and important nutrient signals for energy and protein supplementation. The study uses muscle-specific branched-chain α-keto acid dehydrogenase kinase (Bckdk) conditional knockout (cKO) mice to reveal the contribution of BCAA metabolic dysfunction to muscle wasting. METHOD AND RESULTS: Muscle-specific Bckdk-cKO mice are generated through crossbreeding of Bckdkf/f mice with Myf5Cre mice. Lewis lung cancer (LLC) tumor transplantation is used to establish the cancer cachexia model. The occurrence of cancer cachexia is accelerated in the muscle-specific Bckdk-cKO mice after bearing LLC tumor. Wasting skeletal muscle is characterized by increased protein ubiquitination degradation and impaired protein synthesis. The wasting muscle gastrocnemius is mechanized as a distinct BCAA metabolic dysfunction. Based on the atrophy phenotype resulting from BCAA metabolism dysfunction, the optimized BCAA supplementation improves the survival of cancer cachexia in muscle-specific Bckdk-cKO mice bearing LLC tumors, and improves the occurrence of cancer cachexia. The mechanism of BCAA supplementation on muscle mass preservation is based on the promotion of protein synthesis and the inhibition of protein ubiquitination degradation. CONCLUSIONS: Dysfunctional BCAA metabolism contributes to the inhibition of protein synthesis and increases protein degradation in the cancer cachexia model of muscle-specific Bckdk-cKO mice bearing LLC tumors. The reprogramming of BCAA catabolism exerts therapeutic effects by stimulating protein synthesis and inhibiting protein degradation in skeletal muscle.


Assuntos
Aminoácidos de Cadeia Ramificada , Caquexia , Camundongos Knockout , Músculo Esquelético , Atrofia Muscular , Animais , Caquexia/metabolismo , Caquexia/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Aminoácidos de Cadeia Ramificada/metabolismo , Músculo Esquelético/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/complicações , Camundongos , Ubiquitinação , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Masculino , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Camundongos Endogâmicos C57BL , Reprogramação Metabólica , Proteínas Quinases
11.
Mol Psychiatry ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957291

RESUMO

The stimulant methylphenidate (MPH) and the non-stimulant atomoxetine (ATX) are frequently used for the treatment of attention-deficit/hyperactivity disorder (ADHD); however, the function of these drugs in different types of brain cells and their effects on related genes remain largely unknown. To address these questions, we built a pipeline for the simultaneous examination of the activity behavior and transcriptional responses of Drosophila melanogaster at single-cell resolution following drug treatment. We selected the Drosophila with significantly increased locomotor activities (hyperactivity-like behavior) following the administration of each drug in comparison with the control (same food as the drug-treated groups with 5% sucrose, yeast, and blue food dye solution) using EasyFlyTracker. Subsequently, single cell RNA sequencing (scRNASEQ) was used to capture the transcriptome of 82,917 cells, unsupervised clustering analysis of which yielded 28 primary cell clusters representing the major cell types in adult Drosophila brain. Indeed, both neuronal and glial cells responded to MPH and ATX. Further analysis of differentially expressed genes (DEGs) revealed distinct transcriptional changes associated with these two drugs, such as two well-studied dopamine receptor genes (Dop2R and DopEcR) were responsive to MPH but not to ATX at their optimal doses, in addition to genes involved in dopamine metabolism pathways such as Syt1, Sytalpha, Syt7, and Ih in different cell types. More importantly, MPH also suppressed the expression of genes encoding other neurotransmitter receptors and synaptic signaling molecules in many cell types, especially those for Glu and GABA, while the responsive effects of ATX were much weaker. In addition to monoaminergic neuronal transmitters, other neurotransmitters have also shown a similar pattern with respect to a stronger effect associated with MPH than with ATX. Moreover, we identified four distinct glial cell subtypes responsive to the two drugs and detected a greater number of differentially expressed genes associated with ensheathing and astrocyte-like glia. Furthermore, our study provides a rich resource of candidate target genes, supported by drug set enrichment analysis (P = 2.10E-4; hypergeometric test), for the further exploration of drug repurposing. The whole list of candidates can be found at ADHDrug ( http://adhdrug.cibr.ac.cn/ ). In conclusion, we propose a fast and cost-efficient pipeline to explore the underlying molecular mechanisms of ADHD drug treatment in Drosophila brain at single-cell resolution, which may further facilitate drug repurposing applications.

12.
Curr Mol Pharmacol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37881074

RESUMO

BACKGROUND: Cholangiopathies comprise a spectrum of diseases without curative treatments. Pharmacological treatments based on bile acid (BA) metabolism regulation represent promising therapeutic strategies for the treatment of cholangiopathies. Gentiopicroside (GPS), derived from the Chinese medicinal herb Gentianae Radix, exerts pharmacological effects on bile acid metabolism regulation and oxidative stress. OBJECTIVE: The present study aims to investigate the effect of GPS on 3,5-diethoxycarbonyl-1,4dihydrocollidine (DDC)-induced cholangiopathy. METHODS: Two independent animal experiments were designed to evaluate the comprehensive effect of GPS on chronic DDC diet-induced cholangiopathy, including bile duct obliteration, ductular reaction, BA metabolism reprogramming, liver fibrosis, oxidative stress and inflammatory responses. RESULTS: In the first pharmacological experiment, three doses of GPS (5, 25 and 125 mg/kg) were injected intraperitoneally into mice fed a DDC diet for 14 days. DDC induced a typical ductular reaction, increased periductal fibrosis and mixed inflammatory cell infiltration in the portal areas. GPS treatment showed dose-dependent improvements in the ductular reaction, BA metabolism, fibrosis, oxidative stress and inflammatory response. In the second experiment, a high dose of GPS was injected intraperitoneally into control mice for 28 days, resulting in no obvious histologic changes and significant serologic abnormalities in liver function. However, GPS inhibited DDC-induced oxidative stress, serum and hepatic BA accumulation, proinflammatory cytokine production, and immunocyte infiltration. Specifically, the GPS-treated groups showed decreased infiltration of monocyte-derived macrophages and CD4+ and CD8+ T lymphocytes, as well as preserved Kupffer cells. CONCLUSION: GPS alleviated chronic DDC diet-induced cholangiopathy disorder by improving the ductular reaction, periductal fibrosis, oxidative stress and inflammatory response. Its dosage-dependent pharmacological effects indicated that GPS warrants its further evaluation in clinical trials for cholangiopathy.

13.
Commun Biol ; 6(1): 977, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741882

RESUMO

Cancer cachexia is characterized by weight loss and skeletal muscle wasting. Based on the up-regulation of catabolism and down-regulation of anabolism, here we showed genetic mutation-mediated metabolic reprogramming in the progression of cancer cachexia by screening for metabolites and investigating their direct effect on muscle atrophy. Treatment with 93 µM D-2-hydroxyglutarate (D2HG) resulted in reduced myotube width and increased expression of E3 ubiquitin ligases. Isocitrate Dehydrogenase 1 (IDH1) mutant patients had higher D2HG than non-mutant patients. In the in vivo murine cancer cachexia model, mutant IDH1 in CT26 cancer cells accelerated cachexia progression and worsened overall survival. Transcriptomics and metabolomics revealed a distinct D2HG-induced metabolic imbalance. Treatment with the IDH1 inhibitor ivosidenib delayed the progression of cancer cachexia in murine GL261 glioma model and CT26 colorectal carcinoma models. These data demonstrate the contribution of IDH1 mutation mediated D2HG accumulation to the progression of cancer cachexia and highlight the individualized treatment of IDH1 mutation associated cancer cachexia.


Assuntos
Caquexia , Glioma , Humanos , Animais , Camundongos , Caquexia/genética , Caquexia/metabolismo , Atrofia Muscular/genética , Glioma/metabolismo , Fibras Musculares Esqueléticas/patologia
14.
J Tradit Complement Med ; 13(4): 345-357, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396159

RESUMO

Purpose: Cholestatic liver diseases are groups of hepatobiliary diseases without curative drug-based therapy options. Regulation of bile acid (BA) metabolism, hepatoperiductal fibrosis, and inflammatory response indicated present novel methods for the treatment of cholestatic liver disease. Costunolide (COS) from herb Saussurea lappa exerts a pharmacological effect of regulation of BA metabolism, liver fbrosis and inflammatory response. The present study aimed to clarify the pharmacodynamic effects of COS against the murine model of cholestatic liver disease. Methods: We established a murine model of cholestatic liver disease through chronic feeding of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 28 days. Two independent in vivo experiments were designed to reveal the pharmacological effect of COS against cholestatic liver disease. In the first experiment, two dosages of COS (10 and 30 mg/kg) were intraperitoneally injected into model mice daily for 14 days. In the second experiment, high dosage of COS (30 mg/kg) was intraperitoneally injected into control and model mice daily for 28 days. Results: In the evaluation of the hepatoprotective effect of COS, COS showed dosage-dependent improvement of cholestatic liver disease, including ductular reaction, hepatoperiductal fibrosis, and inflammatory response. The mechanism of COS-mediated hepatoprotective effects mainly relies on the regulation of BA metabolism, and the inflammatory response. DDC diet feed induced hepatic BA metabolism, transport and circulation dysfunction. COS treatment not only regulated the BA metabolism and transport gene, but also reprogrammed hepatic primary and secondary BA concentrations. DDC induced hepatic infiltrated monocytes derived macrophages and lymphocytes were inhibited, while Kupffer cells were preserved by COS treatment. The liver elevating inflammatory cytokines of DDC diet feed were alleviated by COS. Moreover, high dosage of 30 mg/kg COS treatment for 28 days resulted in no significant serological changes and no obvious hepatic histopathological changes when compared with control mice. Conclusion: COS protected against DDC diet feeding-induced cholestatic liver disease since COS regulated BA metabolism, ductular reaction, hepatoperiductal fibrosis and inflammatory response. COS is suggested as a potential natural product for the treatment of cholestatic liver disease.

15.
Adv Healthc Mater ; 12(25): e2300731, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341969

RESUMO

Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti3 C2 Tx MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction. Ti3 C2 Tx MXene treatment provides a superior conductivity substrate with a surface rich in functional groups, hydrophilicity, and roughness, which can provide biochemical and physical cues to support NSC adhesion and proliferation. Moreover, Ti3 C2 Tx MXene coating significantly promotes NSC differentiation into both neurons and astrocytes. Interestingly, Ti3 C2 Tx MXene acts synergistically with the alignment of nanofibers to promote the growth of neurites, indicating enhanced maturation of these neurons. RNA sequencing analysis further reveals the molecular mechanism by which Ti3 C2 Tx MXene modulates the fate of NSCs. Notably, surface modification by Ti3 C2 Tx MXene mitigates the in vivo foreign body response to implanted PLLA nanofibers. This study confirms that Ti3 C2 Tx MXene provides multiple advantages for decorating the aligned PLLA nanofibers to cooperatively improve neural regeneration.


Assuntos
Nanofibras , Células-Tronco Neurais , Titânio/farmacologia , Neurônios
16.
Cancer Immunol Res ; 11(8): 1068-1084, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37253111

RESUMO

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we investigated whether it is possible to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism whereby cancer cells suppress T-cell function by generating a metabolically unfavorable tumor microenvironment (TME). In an in silico screen, we identified ADA and PDK1 as metabolic regulators. We then showed that overexpression (OE) of these genes enhanced the cytolysis of CD19-specific chimeric antigen receptor (CAR) T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampened this effect. ADA-OE in CAR T cells improved cancer cytolysis under high concentrations of adenosine, the ADA substrate, and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics analysis of these CAR T cells revealed alterations of global gene expression and metabolic signatures in both ADA- and PDK1-engineered CAR T cells. Functional and immunologic analyses demonstrated that ADA-OE increased proliferation and decreased exhaustion in CD19-specific and HER2-specific CAR T cells. ADA-OE improved tumor infiltration and clearance by HER2-specific CAR T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR T cells and reveal potential targets for improving CAR T-cell therapy.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunogenética , Imunoterapia Adotiva , Metabolômica , Microambiente Tumoral
17.
Phytother Res ; 37(8): 3380-3393, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37073890

RESUMO

The main features of cancer cachexia include skeletal muscle atrophy, which can significantly reduce the quality of life of patients. Clinical treatment of cancer cachexia is mainly based on nutritional therapy and physical exercise; medication only improves appetite but does not reverse the symptoms of skeletal muscle wasting. In this work, we systematically studied the underlying molecular mechanisms by which cucurbitacin IIb (CuIIb) ameliorates muscle wasting in cancer cachexia both in vitro and in vivo. CuIIb significantly ameliorated the chief features of cancer cachexia in vivo, alleviating weight loss, food intake, muscle wasting, adipose tissue depletion, and organ weight reductions. In vitro, CuIIb (10 and 20 µM) dose-dependently attenuated conditioned medium (CM)-induced C2C12 myotube atrophy. Collectively, our findings demonstrated that CuIIb prevented the upregulation of the E3 ubiquitin ligase muscle atrophy Fbox protein (MAFbx), myosin heavy chain (MyHC), and myogenin (MyoG) and impacted protein synthesis and degradation. In addition, CuIIb decreased the phosphorylation of Tyr705 in STAT3 by regulating the IL-6/STAT3/FoxO pathway to reduce skeletal muscle atrophy in cancer cachexia.


Assuntos
Caquexia , Neoplasias , Humanos , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Interleucina-6/metabolismo , Qualidade de Vida , Neoplasias/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Transdução de Sinais , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fator de Transcrição STAT3/metabolismo
18.
Am J Health Behav ; 47(1): 30-39, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36945089

RESUMO

Objectives: Pain is one of the most common and distressing symptoms co-occurring with cancer progression and treatment, and medication adherence plays an important role in achieving good pain control. However, research on medication adherence and influential factors among individuals with cancer pain (CP) is limited in China. The present study aimed to investigate the adherence to analgesics in patients with CP in China and to identify factors that may influence adherence. Methods: A cross-sectional study was conducted from June 2020 to February 2021. Study instruments consisted of a set of validated questionnaires, 5 measurement instruments including the numerical rating scale (NRS), ID-Pain, Morisky Medication Adherence Scale-Chinese validated version (MMAS-C), Beliefs about Medicines Questionnaire (BMQ) - Specific, and the Hospital Anxiety and Depression Scale (HADS). Results: A total of 141 participants with CP including 71 males (50.4%), aged 54.5±15.5 years were surveyed in this study. Overall, 83 patients (58.9%) showed adherence, but 58 patients (41.1%) showed non-adherence to analgesics. The univariate analysis showed that analgesic adherence was associated with pain duration of>3 months, outbreaks of pain in the last 24 hours, presence of side effects, getting analgesics in time, presence of neuropathic pain, stopping analgesics or adjusting dosage by themselves, presence of anxiety and depression, and beliefs about medicines. Moreover, the multivariate logistic regression showed that getting analgesic drugs in time (odds ratio [OR]=5.218, 95% confidence interval [CI] 1.691-16.100) and high BMQ-Necessity (OR=1.907, 95% CI 1.418-2.565) were associated with high adherence, stopping analgesics or adjusting dosage by themselves (OR=7.958, 95% CI 2.443-25.926) and high BMQ-Concern (OR=0.760, 95% CI 0.600-0.964) were more likely to be associated with non-adherence. Conclusion: In view of our findings, it may be critical for individuals to have a better understanding and strong beliefs about their prescribed analgesic drugs. Pain education, counseling and follow-up of patients and their caregivers, and removal of barriers to accessing analgesic drugs could be considered in further intervention strategies.


Assuntos
Dor do Câncer , Neoplasias , Masculino , Humanos , Dor do Câncer/tratamento farmacológico , Estudos Transversais , Analgésicos/uso terapêutico , Dor/tratamento farmacológico , Adesão à Medicação , Inquéritos e Questionários , China , Conhecimentos, Atitudes e Prática em Saúde , Neoplasias/complicações
19.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993638

RESUMO

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically unfavorable tumor microenvironment (TME). Specifically, we use an in silico screen to identify ADA and PDK1 as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific CD8 CAR-T cells against cognate leukemia cells, and conversely, ADA or PDK1 deficiency dampens such effect. ADA -OE in CAR-T cells improves cancer cytolysis under high concentrations of adenosine, the ADA substrate and an immunosuppressive metabolite in the TME. High-throughput transcriptomics and metabolomics in these CAR-Ts reveal alterations of global gene expression and metabolic signatures in both ADA- and PDK1- engineered CAR-T cells. Functional and immunological analyses demonstrate that ADA -OE increases proliferation and decreases exhaustion in α-CD19 and α-HER2 CAR-T cells. ADA-OE improves tumor infiltration and clearance by α-HER2 CAR-T cells in an in vivo colorectal cancer model. Collectively, these data unveil systematic knowledge of metabolic reprogramming directly in CAR-T cells, and reveal potential targets for improving CAR-T based cell therapy. Synopsis: The authors identify the adenosine deaminase gene (ADA) as a regulatory gene that reprograms T cell metabolism. ADA-overexpression (OE) in α-CD19 and α-HER2 CAR-T cells increases proliferation, cytotoxicity, memory, and decreases exhaustion, and ADA-OE α-HER2 CAR-T cells have enhanced clearance of HT29 human colorectal cancer tumors in vivo .

20.
Chem Biodivers ; 20(1): e202200450, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419360

RESUMO

The anthracycline antibiotic doxorubicin (DOX) is an effective anticancer agent, but its clinical use is limited by dose-dependent cardiotoxicity. Scutellarin (SCU), a natural polyphenolic flavonoid, is used as a cardioprotective agent for infarction and ischemia-reperfusion injury. This study investigated the beneficial effect of SCU on DOX-induced chronic cardiotoxicity. Rats were injected intraperitoneally (i. p.) with DOX (2.5 mg/kg) twice a week for four weeks and then allowed to rest for two weeks to establish the chronic cardiotoxicity animal model. A dose of 10 mg/kg/day SCU was injected i. p. daily for six weeks to attenuate cardiotoxicity. SCU attenuated DOX-induced elevated oxidative stress levels and cardiac troponin T (cTnT), decreased left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), elevated isovolumic relaxation time (IVRT), electrophysiology and histopathological alterations. In addition, SCU significantly attenuated DOX-induced cardiac fibrosis and reduced extracellular matrix (ECM) accumulation by inhibiting the TGF-ß1/Smad2 signaling pathway. Furthermore, SCU also prevented against DOX-induced apoptosis and autophagy as evidenced by upregulation of Bcl-2, downregulation of Bax and cleaved caspase-3, inhibited the AMPK/mTOR pathway. These results revealed that the cardioprotective effect of SCU on DOX-induced chronic cardiotoxicity may be attributed to reducing oxidative stress, myocardial fibrosis, apoptosis and autophagy.


Assuntos
Cardiotoxicidade , Função Ventricular Esquerda , Animais , Ratos , Apoptose , Autofagia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Fibrose , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA