Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014639

RESUMO

Thermo-osmotic energy conversion using waste heat is one of the approaches to harvesting sustainable energy and reducing associated environmental impacts simultaneously. In principle, ions transport through a charged nanopore membrane under the effect of a thermal gradient, inducing a different voltage between two sides of the membrane. Recent publications mainly reported novel materials for enhancing the thermoelectric voltage in response to temperature difference, the so-called Seebeck coefficient. However, the effect of the surface charge distribution along nanopores on thermo-osmotic conversion has not been discussed yet. In this paper, a numerical simulation based on the Nernst-Planck-Poisson equations, Navier-Stokes equations, and heat transfer equations is carried out to consider the effect of surface charge-regulation density and pH of KCl solutions on the Seebeck coefficient. The results show that the highest ionic Seebeck coefficient of -0.64 mV/K is obtained at 10-4 M KCl solution and pH 9. The pH level and pore structure also reveal a strong effect on the thermo-osmotic performance. Moreover, the pH level at one reservoir is varied from 5 to 9, while the pH of 5 is fixed at the other reservoir to investigate the pH effect on the thermos-osmosis ion transport. The results confirm the feasibility that using the pH can enhance the thermo-osmotic conversion for harvesting osmotic power from low-grade heat energy.

2.
Micromachines (Basel) ; 12(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34832695

RESUMO

Heavy metal contaminants have serious consequences for the environment and human health. Consequently, effective methods for detecting their presence, particularly in water and food, are urgently required. Accordingly, the present study proposes a sensor capable of detecting mercury Hg(II) and lead Pb(II) ions simultaneously, using graphene oxide (GO) as a quenching agent and an aptamer solution as a reagent. In the proposed device, the aptamer sequences are labeled by FAM and HEX fluorescent dyes, respectively, and are mixed well with 500 ppm GO solution before injection into one inlet of the microchannel, and the heavy metal sample solution is injected into another inlet. The presence of Hg(II) and Pb(II) ions is then detected by measuring the change in the fluorescence intensity of the GO/aptamer suspension as the aptamer molecules undergo fluorescence resonance energy transfer (FRET). The selectivity of these two ions is also shown to be clear among other mixed heavy metal ions. The experimental results show that the aptamer sensors have a linear range of 10~250 nM (i.e., 2.0~50 ppb) for Hg(II) ions and 10~100 nM (i.e., 2.1~20.7 ppb) for Pb(II) ions. Furthermore, the limit of detection is around 0.70 ppb and 0.53 ppb for Hg(II) and Pb(II), respectively, which is lower than the maximum limits of 6 ppb and 10 ppb prescribed by the World Health Organization (WHO) for Hg(II) and Pb(II) in drinking water, respectively.

3.
RSC Adv ; 10(32): 18624-18631, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35518343

RESUMO

Harvesting blue energy from saline solutions has attracted much attention recently. Salinity-based power generation in nanopores is governed by both passive factors (e.g., the nanopore diameter, nanopore length, nanopore material, and pore density) and active factors (e.g., the concentration gradient, temperature, and pH environment). The present study performs COMSOL multiphysics numerical simulations based on the Poisson-Nernst-Planck equations, Navier-Stokes equations and heat transfer equation to examine the combined effects of the temperature gradient and pH level on the diffusion voltage and maximum power generation in single silica nanopores with lengths of 100 nm and 500 nm, respectively. In performing the simulations, the pH value is adjusted in the range of pH 5-11, the salinity concentration gradient is 100-fold and 1000-fold, respectively. Three different thermal conditions are considered, namely (1) isothermal-room temperature (298 K); (2) asymmetric thermal (temperature of low-concentration reservoir and high-concentration reservoir are 323 K and 298 K, respectively); and (3) isothermal-high temperature (323 K). The results show that the generated power varies significantly with both the pH level and the temperature conditions. In particular, the asymmetric thermal condition yields an effective improvement in the power generation performance since it reduces the surface charge density on the surface of the nanopore near the low-concentration end and therefore suppresses the ion concentration polarization (ICP) effect. The improvement in the energy harvesting performance is particularly apparent at pH levels in the range of 9-10 (about 100% higher than that of pH 7). Overall, the results confirm the feasibility of using active factors to enhance the power generation performance of salinity gradient-based nanopore systems.

4.
Anal Chim Acta ; 1033: 137-147, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30172319

RESUMO

A sensing platform based on the attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) technique and immobilized aptamer has been proposed herein for the selective detection of mercury ions (Hg2+). In the proposed platform, 5' thiolated 32-mer DNA probes with methylene blue at the 3' end were immobilized on a thin gold (Au) surface layer. Following Hg2+ ions interacting with T bases of the aptamer, T-Hg-T bonds are formed; resulting in a hairpin-shaped formation of the DNA and a detectable change in the IR absorbance of the sensing interface. Notably, the background noise produced by external molecules (e.g., water, non-specific binding molecules and bulk solution) is reduced to a negligible level by means of the ATR detection mode. It is shown that the proposed sensor has a linear response (R2 = 0.986) with high sensitivity and good selectivity over the Hg2+ range of 0.01 µM-50 µM.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Mercúrio/análise , Técnicas Eletroquímicas , Íons/análise , Espectrofotometria Infravermelho , Propriedades de Superfície
5.
Electrophoresis ; 39(2): 289-310, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28960423

RESUMO

Biochemical detection plays a critical role in many analytical fields. For example, blood samples include many proteins with relevance to disease diagnosis and therapeutic monitoring. Foods and beverages contain a large number of chemicals and compounds which must be quantified and characterized to ensure their compliance with safety standards. Detecting trace amounts of contaminants in ambient air or water samples is essential in monitoring the environment and protecting human health. Therefore, effective techniques for performing the rapid and reliable detection of targeted analytes are required. Compared to conventional macroscale devices, microfluidic systems have many advantages, including a greater sensitivity, a faster response time, a reduced sample and reagent consumption, and a greater portability. Accordingly, many microfluidic systems for sample detection have been proposed in recent years. The performance of such devices relies on the target analyte being present in a sufficient concentration to enable its detection. In many biomedical, food testing and environmental applications, the detection limit was restricted. Thus, the sample must first be concentrated before the detection process is carried out. Accordingly, this review provides a comprehensive review of recent advances for sample preconcentration with emphasis on utilizing ion concentration polarization (ICP) effects in micro/nanofluidics platforms. We start with a brief introduction regarding the importance of preconcentration using micro/nanofluidics platforms, followed by in-depth discussions of the ICP effects for the preconcentration and applications to biomedical analysis, food testing and environmental monitoring. Finally, the article concludes with a brief perspective on the future development of the field.


Assuntos
Monitoramento Ambiental , Análise de Alimentos , Técnicas Analíticas Microfluídicas , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia
6.
Sci Rep ; 6: 30731, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464986

RESUMO

A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid.

7.
Anal Chim Acta ; 912: 97-104, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26920777

RESUMO

An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.


Assuntos
Dispositivos Lab-On-A-Chip , Metanol/análise , Limite de Detecção
8.
Biomicrofluidics ; 10(1): 014119, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26909125

RESUMO

A microfluidic device consisting of a nanoscale Nafion membrane and a polydimethylsiloxane microchannel is proposed for the preconcentration of diluted multi-mixed species samples then following separation and collection. When an electric field is applied across the microchip, an accumulation of the mixed-species sample occurs at the junction between the microchannel and the membrane by means of ion concentration polarization effect. A separation of the sample then takes place due to the difference in the electrophoretic mobilities of the sample components. Finally, the component of interest is guided to a collection reservoir by manipulating the external potential configuration and is trapped in place by means of a magnetically actuated valve. The preconcentration performance of the proposed device is evaluated in both straight and convergent microchannels using a fluorescein isothiocyanate labeled bovine serum albumin (FITC-BSA) sample. It is shown that a preconcentration factor of 40 times can be achieved using a straight microchannel. By contrast, the preconcentration factor increases to 50 times when using a convergent channel. The practical feasibility of the proposed device is demonstrated by performing the preconcentration, separation, and collection of a mixed FITC-BSA and Tetramethylrhodamine sample.

9.
Lab Chip ; 16(5): 925-31, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26876347

RESUMO

The lack of sensitivity is a major problem among microfluidic paper-based analytical devices (µPADs) for early disease detection and diagnosis. Accordingly, the present study presents a method for improving the enrichment factor of low-concentration biomarkers by using shallow paper-based channels realized through a double-sided wax-printing process. In addition, the enrichment factor is further enhanced by exploiting the ion concentration polarization (ICP) effect on the cathodic side of the nanoporous membrane, in which a stationary sample plug is obtained. The occurrence of ICP on the shallow-channel µPAD is confirmed by measuring the current-voltage response as the external voltage is increased from 0 to 210 V (or the field strength from 0 to 1.05 × 10(4) V m(-1)) over 600 s. In addition, to the best of our knowledge, the electroosmotic flow (EOF) speed on the µPAD fabricated with a wax-channel is measured for the first time using a current monitoring method. The experimental results show that for a fluorescein sample, the concentration factor is increased from 130-fold in a conventional full-thickness paper channel to 944-fold in the proposed shallow channel. Furthermore, for a fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) sample, the proposed shallow-channel µPAD achieves an 835-fold improvement in the concentration factor. The concentration technique presented here provides a novel strategy for enhancing the detection sensitivity of µPAD applications.


Assuntos
Fluoresceína-5-Isotiocianato/análogos & derivados , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Papel , Soroalbumina Bovina/química , Animais , Bovinos , Fluoresceína-5-Isotiocianato/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
10.
Micromachines (Basel) ; 7(11)2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404378

RESUMO

An energy conversion microchip consisting of two circular microchambers and a Nafion-filled microchannel is fabricated using standard micro-electro-mechanical systems (MEMS) techniques. When the chambers are filled with KCl solutions with different concentrations, the Nafion microchannel acts as a cation-selective membrane and results in the generation of electrical power through a reverse electrodialysis (RED) process. The current-potential characteristics of the Nafion membrane are investigated for devices with various microchannel lengths and electrolyte concentration ratios. It is shown that for a given voltage, the current and generated power increase with a reducing channel length due to a lower resistance. In addition, a maximum power density of 755 mW/m² is obtained given an electrolyte concentration ratio of 2000:1 (unit is mM). The optimal device efficiency is found to be 36% given a channel length of 1 mm and a concentration ratio of 1000:1 (mM). Finally, no enhancement of the short circuit current is observed at higher concentration ratios.

11.
Micromachines (Basel) ; 7(1)2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30407381

RESUMO

General biochemistry detection on paper-based microanalytical devices (PADs) uses pipette titration. However, such an approach is extremely time-consuming for large-scale detection processes. Furthermore, while automated methods are available for increasing the efficiency of large-scale PAD production, the related equipment is very expensive. Accordingly, this study proposes a low-cost method for PAD manufacture, in which the reagent is applied using a modified inkjet printer. The optimal reaction times for the detection of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are shown to be 6 and 7 min, respectively, given AST and ALT concentrations in the range of 5.4 to 91.2 U/L (R² = 0.9932) and 5.38 to 86.1 U/L (R² = 0.9944). The experimental results obtained using the proposed PADs for the concentration detection of AST and ALT in real human blood serum samples are found to be in good agreement with those obtained using a traditional spectrophotometric detection method by National Cheng Kung University hospital.

12.
Sensors (Basel) ; 15(12): 30704-15, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26690167

RESUMO

A fluidic microchip incorporating a convergent microchannel and a Nafion-nanoporous membrane is proposed for the preconcentration and separation of multi-species samples on a single platform. In the device, sample preconcentration is achieved by means of the ion concentration polarization effect induced at the micro/nano interface under the application of an external electric field, while species separation is achieved by exploiting the different electrophoretic mobilities of the sample components. The experimental results show that the device is capable of detecting C-reactive protein (CRP) with an initial concentration as low as 9.50 × 10(-6) mg/L given a sufficient preconcentration time and driving voltage. In addition, it is shown that a mixed-species sample consisting of three negatively-charged components (bovine serum albumin (BSA), tetramethylrhodamine(TAMRA) isothiocyanate-Dextran and fluorescent polymer beads) can be separated and preconcentrated within 20 min given a driving voltage of 100 V across 1 cm microchannel in length. In general, the present results confirm the feasibility of the device for the immunoassay or detection of various multi-species samples under low concentration in the biochemical and biomedical fields. The novel device can therefore improve the detection limit of traditional medical facilities.


Assuntos
Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/instrumentação , Proteína C-Reativa/análise , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Soroalbumina Bovina
13.
Talanta ; 145: 6-11, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459437

RESUMO

The reagent required for bio-sample detection on paper-based analytical devices is generally introduced manually using a pipette. Such an approach is time-consuming; particularly if a large number of devices are required. Automated methods provide a far more convenient solution for large-scale production, but incur a substantial cost. Accordingly, the present study proposes a low-cost method for the paper-based analytical devices in which the biochemical reagents are sprayed onto the device directly using a modified commercial inkjet printer. The feasibility of the proposed method is demonstrated by performing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) tests using simple two-dimensional (2D) paper-based devices. In both cases, the reaction process is analyzed using an image-processing-based colorimetric method. The experimental results show that for AST detection within the 0-105 U/l concentration range, the optimal observation time is around four minutes, while for ALT detection in the 0-125 U/l concentration range, the optimal observation time is approximately one minute. Finally, for both samples, the detection performance of the sprayed-reagent analytical devices is insensitive to the glucose concentration.


Assuntos
Testes de Química Clínica/instrumentação , Tinta , Dispositivos Lab-On-A-Chip , Impressão/instrumentação , Alanina Transaminase/análise , Aspartato Aminotransferases/análise , Calibragem , Estudos de Viabilidade , Glucose/análise , Indicadores e Reagentes/química , Fatores de Tempo
14.
Artigo em Inglês | MEDLINE | ID: mdl-26172714

RESUMO

A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10(-3) M.

15.
Biomicrofluidics ; 9(1): 014122, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25759755

RESUMO

Microfluidic paper-based analytical devices (µPADs) are a promising solution for a wide range of point-of-care applications. The feasibility of inducing ion concentration polarization (ICP) on µPADs has thus far attracted little attention. Accordingly, this study commences by demonstrating the ICP phenomenon in a µPAD with a Nafion ion-selective membrane. We are the first to measure the current-voltage curve on a Nafion-coated µPAD in order to indicate that the ion depletion occurs and the ICP is triggered when the current reaches the limiting current. The ICP effect is then exploited to preconcentrate fluorescein on µPADs incorporating straight and convergent channels. By an optimal geometric design, it is shown that the convergent channel results in a greater preconcentration effect than the straight channel. Specifically, a 20-fold enhancement in the sample concentration is achieved after 130 s given an initial concentration of [Formula: see text] M and an external potential of 50 V. By contrast, the straight channel yields only a 10-fold improvement in the concentration after 180 s. Further, the practical feasibility of the proposed convergent-channel µPAD is demonstrated using fluorescein isothiocyanate labeled bovine serum albumin. The experimental results show that a 15-fold enhancement of the initial sample concentration ([Formula: see text] M) is obtained after 120 s given an external potential of 50 V.

16.
Biomed Microdevices ; 17(2): 25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681049

RESUMO

A microfluidic preconcentration device comprising a microchannel and a surface-patterned nanoscale Nafion membrane is proposed. Given the application of an electric field across the chip, the nanopore within Nafion membrane becomes ion selective due to an overlapping of the electric double layer. The resulting difference in flux of the co- and counter-ions within the membrane nanopore prompts the formation of a concentration gradient and leads to a gradual accumulation of the co-ions at the micro-nano junction. It is shown experimentally that the rate of concentration and the preconcentration factor both increase with an increasing electrical field intensity. The preconcentration performance in a straight microchannel is compared with that in a convergent microchannel using fluorescein disodium salt dehydrate and Fluorescein isothiocyanate (FITC)-labeled bovine serum albumin samples. The results show that the reduced cross-sectional area of the convergent microchannel increases the preconcentration factor compared to that obtained in a straight microchannel and yields a significant reduction in the preconcentration time.


Assuntos
Dispositivos Lab-On-A-Chip , Nanoestruturas/química , Nanotecnologia/instrumentação , Desenho de Equipamento , Fluoresceína/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/análise , Fluoresceína-5-Isotiocianato/química , Polímeros de Fluorcarboneto/química , Técnicas Analíticas Microfluídicas/instrumentação , Soroalbumina Bovina/análise , Soroalbumina Bovina/química
17.
Biomicrofluidics ; 8(6): 066502, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25553202

RESUMO

Microfluidic paper-based analytical devices (µPADs) are widely used for performing diagnostic assays. However, in many assays, time-delay valves are required to improve the sensitivity and specificity of the results. Accordingly, this study presents a simple, low-cost method for realizing time-delay valves using a color wax printing process. In the proposed approach, the time-delay effect is controlled through a careful selection of both the color and the saturation of the wax content. The validity of the proposed method is demonstrated by performing nitrite and oxalate assays using both a simple two-dimensional µPAD and a three-dimensional µPAD incorporating a colored wax-printed timer. The experimental results confirm that the flow time can be controlled through an appropriate selection of the color and the wax content. In addition, it is shown that nitrite and oxalate assays can be performed simultaneously on a single device. In general, the results presented in this study show that the proposed µPADs provide a feasible low-cost alternative to conventional methods for performing diagnostic assays.

18.
Lab Chip ; 13(19): 3886-92, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23918038

RESUMO

A polydimethylsiloxane (PDMS) optofluidic microfluidic chip comprising a tunable optofluidic in-plane biconvex microlens and a tunable optofluidic in-plane microprism is proposed for controlling the focal length and deviation angle of a light beam. In the proposed device, the microlens comprises an expansion chamber containing a high refractive index stream sandwiched between two low refractive index streams. Meanwhile, the microprism comprises a triangular chamber filled with two liquids, one with a higher refractive index than that of PDMS and the other a lower refractive index than that of PDMS. It is shown that the radius of curvature (and therefore the focal length) of the microlens can be adjusted by controlling the flow rate ratio of the core and cladding streams. In addition, it is shown that the deviation angle of the light ray exiting the microprism depends on the refractive indices of the two working fluids, the apex angle of the prism chamber, and the flow rate ratio of the two working fluids. In general, the results show that the biconvex microlens enables the focal length to be adjusted in the range of 2.9-7.6 mm when using benzothiazole and ethylene glycol-ethanol as the core and cladding fluids, respectively. Moreover, a deviation angle range of -6.2° to 22.3° can be achieved when using a microprism chamber with an apex angle of 90° and benzothiazole and DI water as the working fluids. The integrated optofluidic chip therefore can manipulate the focal length and deviation angle of a light beam by adjusting the relative flow rates of fluids.


Assuntos
Luz , Técnicas Analíticas Microfluídicas/métodos , Fenômenos Ópticos , Dimetilpolisiloxanos , Lentes , Técnicas Analíticas Microfluídicas/instrumentação
19.
Anal Chem ; 85(9): 4468-74, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23547770

RESUMO

Understanding the properties of liquid confined in extended nanospaces (10-1000 nm) is crucial for nanofluidics. Because of the confinement and surface effects, water may have specific structures and reveals unique physicochemical properties. Recently, our group has developed a super resolution laser-induced fluorescence (LIF) technique to visualize proton distribution with the electrical double layer (EDL) in a fused-silica extended nanochannel (Kazoe, Y.; Mawatari, K.; Sugii, Y.; Kitamori, T. Anal. Chem.2011, 83, 8152). In this study, based on the coupling of the Poisson-Boltzmann theory and site-dissociation model, the effect of specific water properties in an extended nanochannel on formation of EDL was investigated by comparison of numerical results with our previous experimental results. The numerical results of the proton distribution with a lower dielectric constant of approximately 17 were shown to be in good agreement with our experimental results, which confirms our previous observation showing a lower water permittivity in an extended nanochannel. In addition, the higher silanol deprotonation rate in extended nanochannels was also demonstrated, which is supported by our previous results of NMR and streaming current measurements. The present results will be beneficial for a further understanding of interfacial chemistry, fluid physics, and electrokinetics in extended nanochannels.


Assuntos
Nanoestruturas/química , Prótons , Água/química , Elétrons
20.
Electrophoresis ; 33(5): 751-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22522531

RESUMO

Preconcentration microfluidic devices are fabricated incorporating straight or convergent-divergent microchannels and hydrogel or Nafion membranes. Sample preconcentration is achieved utilizing concentration-polarization effects. The effects of the microchannel geometry on the preconcentration intensity are systematically examined. It is shown that for the preconcentrator with the straight microchannel, the time required to achieve a satisfactory preconcentration intensity increases with an increasing channel depth. For the convergent-divergent microchannel, the preconcentration intensity increases with a reducing convergent channel width. Comparing the preconcentration performance of the two different microchannel configurations, it is found that for an equivalent width of the main microchannel, the concentration effect in the convergent-divergent microchannel is faster than that in the straight microchannel.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Modelos Teóricos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA