Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34436372

RESUMO

The reverse electrodialysis (RED) stack-harnessing salinity gradient power mainly consists of ion exchange membranes (IEMs). Among the various types of IEMs used in RED stacks, pore-filling ion exchange membranes (PIEMs) have been considered promising IEMs to improve the power density of RED stacks. The compositions of PIEMs affect the electrical resistance and permselectivity of PIEMs; however, their effect on the performance of large RED stacks have not yet been considered. In this study, PIEMs of various compositions with respect to the RED stack were adopted to evaluate the performance of the RED stack according to stack size (electrode area: 5 × 5 cm2 vs. 15 × 15 cm2). By increasing the stack size, the gross power per membrane area decreased despite the increase in gross power on a single RED stack. The electrical resistance of the PIEMs was the most important factor for enhancing the power production of the RED stack. Moreover, power production was less sensitive to permselectivities over 90%. By increasing the RED stack size, the contributions of non-ohmic resistances were significantly increased. Thus, we determined that reducing the salinity gradients across PIEMs by ion transport increased the non-ohmic resistance of large RED stacks. These results will aid in designing pilot-scale RED stacks.

2.
Water Res ; 166: 115078, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542547

RESUMO

When operating reverse electrodialysis (RED) with several hundreds of cell pairs, a large stack voltage of more than 10 V facilitates water electrolysis, even when redox couples are employed for the electrode reaction. Upon feeding natural water containing multivalent ions, ion crossover through a shielding membrane causes inorganic scaling around the cathode and the interior of the membrane stack, due to the combination with the hydroxide ions produced via water reduction. In this work, we introduce a bipolar membrane (BPM) as a shielding membrane at the cathode to suppress inorganic precipitation. Water splitting in the bilayer structure of the BPM can block the ions diffusing from the catholyte and the feed solution, maintaining the current density. To evaluate the effect of the BPM on the inorganic precipitates, diluted sea salt solution is allowed to flow through the outermost feed channel near the cathode, in order to maintain as large a stack voltage as possible, which is important to induce water splitting in the BPM when incorporated into an RED stack of 100 cell pairs. We measure the electric power of the RED according to the arrangement of the BPM and compare it with that of conventional RED. The degree of inorganic scaling is also compared according to the kind of shielding membrane used (anion exchange membrane, cation exchange membrane, and BPM (Neosepta or Fumasep)). The BPM (Neosepta) shows the best performance for suppressing the formation of precipitates. It can hence be used to design a highly stable electrode system for long-term operation of a large-scale RED feeding natural water.


Assuntos
Eletricidade , Membranas Artificiais , Eletrodos , Eletrólise , Água
3.
Water Res ; 165: 114970, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31426007

RESUMO

To properly design reverse electrodialysis (RED) stacks, modeling of ion transport and prediction of power generation on the single RED stack are very important. Currently, the Nernst-Planck equation is widely adopted to simulate ion transport through IEMs. However, applying typical Nernst-Planck equation is not proper to analyze ion transport through the heterogeneous thin-composite pore-filling membrane because of the non-conductive site in the membrane matrix. Herein, we firstly introduced modified Nernst-Planck equation by addressing conductive traveling length (CTL) to simulate the ion transport through the thin-composite pore-filling membranes and the performance of a single RED stack with the same membranes. Also, 100 cell-pairs of RED stacks were assembled to validate modified Nernst-Planck equation according to the flow rate and membrane types. Under the OCV condition, the conductivity of the effluents was measured to validate the modified Nernst-Planck equation, and differences between modeling and experiments were less than 1.5 mS/cm. Theoretical OCV and current density were estimated by using modified Nernst-Planck equation. In particular, hydrophobicity on the surface of the heterogeneous membrane was considered to describe ion transport through the pore-filling membranes. Moreover, power generation from RED stacks was calculated according to the flow rate and the number of cell pairs.


Assuntos
Membranas Artificiais , Fontes de Energia Bioelétrica , Condutividade Elétrica
4.
Water Res ; 151: 252-259, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30605773

RESUMO

Flow-electrode-based capacitive deionization (FCDI) has attracted much attention owing to its continuous and scalable desalination process without the need for a discharging step, which is required in conventional fixed-electrode capacitive deionization. However, flow electrode slurry is poorly conductive, which restricts desalination performance, but higher carbon mass loading in the slurry could improve salt removal capacity due to enhanced connectivity. However, increased viscosity restricts higher loading of active materials. Herein, we report a significant increase in salt removal performance by introducing functionalized carbon nanotubes (FCNTs) into activated carbon (AC)-based flow electrodes, which led to the generation of conducting bridges between AC particles. The salt removal rate in the presence of 0.25 wt% FCNT with 5 wt% AC improved four-fold from that obtained with only 5 wt% AC, which is the highest value reported in the literature so far (from 1.45 to 5.72 mmol/m2s, at a saline water concentration of 35.0 g/L and applied potential of 1.2 V). Further, FCNTs with a high aspect ratio (∼50,000) can more effectively enhance salt removal than low-aspect ratio FCNTs (∼1300). Electrochemical analysis further confirms that the addition of FCNTs can efficiently form a connecting percolation network, thus enhancing the conductivity of the flow electrode slurry for the practical application of highly efficient desalination systems.


Assuntos
Nanotubos de Carbono , Purificação da Água , Carvão Vegetal , Eletrodos , Cloreto de Sódio
5.
Water Res ; 148: 261-271, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388527

RESUMO

Reverse electrodialysis (RED) has vast potential as a clean, nonpolluting, and sustainable renewable energy source; however, pilot-scale RED studies employing real waters remain rare. This study reports the largest RED (1000 cell pairs, 250 m2) with municipal wastewater effluent (1.3-5.7 mS/cm) and seawater (52.9-53.8 mS/cm) as feed solutions. The RED stack was operated at a velocity of 1.5 cm/s and the pilot plant produced 95.8 W of power (0.38 W/m2total membrane or 0.76 W/m2cell pair). During operation of the RED, the inlet design of the stack, comprising thin spacers, and the water dissociation reaction at the cathode were revealed as vulnerabilities of the stack. Specifically, pressure drops at the fluid inlet parts had the most detrimental effects on power output due to clogged spacers around the inlet parts. In addition, precipitates resulting in inorganic fouling were inevitable during the water dissociation reaction due to significant potential generated by the stack in the cathode chamber. Na+ and Cl- accounted for the majority of ions transferred from seawater to wastewater effluent through ion exchange membranes (IEMs). Moreover, some divalent cations in seawater, Mg2+ and Ca2+, were also transferred to the wastewater effluent. Some organics with relatively low molecular weights in the wastewater effluent passed through the IEMs, and their hydrophobic properties elevated the specific UV absorbance (SUVA) level in the seawater.


Assuntos
Águas Residuárias , Purificação da Água , Troca Iônica , Membranas Artificiais , Salinidade , Água do Mar
6.
Langmuir ; 34(37): 10837-10846, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30132671

RESUMO

We have successfully exploited the Michael-type addition reaction between catechol and DABCO (1,4-diazabicyclo-[2,2,2]octane) molecules under alkaline conditions for the formation of new quaternary ammonium (QA) groups in an anion-exchange membrane. The anion-exchange membranes (AEMs) were prepared using the pore-filling method by addition of electrolytes (vinyl benzyl trimethylammonium chloride (VBTMA), dopamine methacrylamide (DMA) bearing a catechol group, and ethylene glycol diacrylate as a cross-linker) to a porous substrate. The formation of new QA groups by the reaction of DABCO with catechol components was confirmed by characterization of new peaks in the Fourier transform infrared spectra of the AEMs. The DABCO-bound AEM demonstrated a significant decrease in area resistance (0.4 Ω·cm2) and increase in permselectivity (94%). Furthermore, the electrochemical properties of the AEMs could be controlled by altering the concentrations of VBTMA and DMA and the formation of new bonds between DMA and DABCO. The calculated theoretical (4.31 W/m2) and practical (1.52 W/m2) power densities during a reverse electrodialysis (RED) process employing the membrane with the best properties (E2C1-DMA0.5-DABCO) were by 33 and 18% higher than those of a system utilizing a commercial membrane, Neosepta AMX (3.25 and 1.29 W/m2). Therefore, the AEM synthesized in this study is a good candidate for use in RED applications.

7.
Nano Lett ; 16(7): 4322-8, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27332701

RESUMO

The smallness of natural molecules and atoms with respect to the wavelength of light imposes severe limits on the nature of their optical response. For example, the well-known argument of Landau and Lifshitz and its recent extensions that include chiral molecules show that the electric dipole response dominates over the magneto-electric (bianisotropic) and an even smaller magnetic dipole optical response for all natural materials. Here, we experimentally demonstrate that both these responses can be greatly enhanced in plasmonic nanoclusters. Using atomic force microscopy nanomanipulation technique, we assemble a plasmonic metamolecule that is designed for strong and simultaneous optical magnetic and magneto-electric excitation. Angle-dependent scattering spectroscopy is used to disentangle the two responses and to demonstrate that their constructive/destructive interplay causes strong directional scattering asymmetry. This asymmetry is used to extract both magneto-electric and magnetic dipole responses and to demonstrate their enhancement in comparison to ordinary atomistic materials.

8.
Environ Sci Technol ; 50(11): 5892-9, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27162028

RESUMO

Flow-electrode capacitive deionization (FCDI) is novel capacitive deionization (CDI) technology that exhibits continuous deionization and a high desalting efficiency. A flow-electrode with high capacitance and low resistance is required for achieving an efficient FCDI system with low energy consumption. For developing high-performance flow-electrode, studies should be conducted considering porous materials, conductive additives, and electrolytes constituting the flow-electrode. Here, we evaluated the desalting performances of flow-electrodes with spherical activated carbon and aqueous electrolytes containing various concentrations of NaCl in the FCDI unit cell for confirming the effect of salt concentration on the electrolyte of a flow-electrode on desalting efficiency. We verified the necessity of a moderate amount of salt in the flow-electrode for compensating for the reduction in the performance of the flow-electrode, attributed to the resistance of water used as the electrolyte. Simultaneously, we confirmed the potential use of salt water with a high salt concentration, such as seawater, as an aqueous electrolyte for the flow-electrode.


Assuntos
Salinidade , Purificação da Água , Capacitância Elétrica , Eletrodos , Cloreto de Sódio
9.
Proc Natl Acad Sci U S A ; 112(40): 12288-92, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26372957

RESUMO

Plasmonic cavities represent a promising platform for controlling light-matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light's coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices.

10.
Langmuir ; 29(37): 11793-801, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23962334

RESUMO

A systematic approach to manipulating flexible carbon nanotubes (CNTs) has been developed on the basis of atomic force microscope (AFM) based pushing. Pushing CNTs enables efficient transport and precise location of individual CNTs. A key issue for pushing CNTs is preventing defective distortion in repetitive bending and unbending deformation. The approach presented here controls lateral movement of an AFM tip to bend CNTs without permanent distortion. The approach investigates possible defects caused by tensile strain of the outer tube under uniform bending and radial distortion by kinking. Using the continuum beam model and experimental bending tests, dependency of maximum bending strain on the length of bent CNTs and radial distortion on bending angles at a bent point have been demonstrated. Individual CNTs are manipulated by limiting the length of bent CNTs and the bending angle. In our approach, multiwalled CNTs with 5-15 nm diameter subjected to bending deformation produce no outer tube breakage under uniform bending and reversible radial deformation with bending angles less than 110°. The lateral tip movement is determined by a simple geometric model that relies on the shape of multiwalled CNTs. The model effectively controls deforming CNT length and bending angle for given CNT shape. Experimental results demonstrate successful manipulation of randomly dispersed CNTs without visual defects. This approach to pushing can be extended to develop a wide range of CNT based nanodevice applications.

11.
Adv Mater ; 23(48): 5767-72, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22057555

RESUMO

Thermally stable red and green light-emitting nanohybrids are introduced as an organic luminescent converter with broad color tunability and a high color rendering index for white light-emitting diodes (LEDs). Nanohybrid-based white LEDs are thermally stable and the color coordination is not changed by heat exposure.


Assuntos
Luminescência , Nanoestruturas/química , Nanotecnologia/métodos , Cor , Corantes/química , Desenho de Equipamento , Temperatura Alta , Luz , Teste de Materiais , Nitrogênio/química , Siloxanas/química , Espectrofotometria Ultravioleta/métodos , Temperatura
12.
Chem Commun (Camb) ; 47(21): 6051-3, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21537501

RESUMO

The thiol-ene reaction of a sol-gel synthesized oligosiloxane thiol-ene mixture was processed through UV irradiation, resulting in transparency, high refractive index, good thermal stability and especially excellent electrical insulation materials. It provides new strong potential of the thiol-ene system for application in dielectric materials.

14.
ACS Appl Mater Interfaces ; 2(3): 913-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356298

RESUMO

Photocurable and highly condensed fluorinated methacrylate oligosiloxane, with a low dielectric constant (kappa = 2.54), was prepared by a nonhydrolytic sol-gel condensation reaction. The oligosiloxane resin was then spin-coated, photocured, and thermally baked in order to fabricate a fluorinated methacrylate hybrid material (FM hybrimer) thin film. This study investigated the application of this FM hybrimer film as a low-kappa passivation layer in LCD-based thin film transistors (TFT). It was found that a dielectric constant as low as kappa = 2.54 could be obtained, without introducing pores in the dense FM hybrimer films. This study compares FM hybrimer film characteristics with those required for passivation layers in LCD-TFTs, including thermal stability, optical transmittance, hydrophobicity, gap fill, and planarization effects as well as electrical insulation.

15.
ACS Appl Mater Interfaces ; 1(7): 1585-90, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20355965

RESUMO

A highly condensed epoxy-oligosiloxane resin was synthesized using a sol-gel condensation reaction of (3-glycidoxypropyl)trimethoxysilane and diphenylsilanediol in the presence of solvent. A higher degree of condensation and a larger molecular size of oligosiloxanes were achieved compared to a condensation reaction without the addition of a solvent. The epoxy-hybrimer coating film was fabricated by the spin coating and thermal curing of the synthesized oligosiloxane resin. The leakage current density and the dielectric constant decreased from 25.9 to 7.6 nA cm(-2) and from 3.16 to 3.03, respectively, by using the solvent in the preparation. The hybrimer coating film of a highly condensed oligosiloxane resin had a high transmittance of over 90% in a wavelength between 300 and 800 nm. Thus, the epoxy-hybrimer coating film can be utilized as the passivation layer in the thin-film transistor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA