Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Am Soc Nephrol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857203

RESUMO

BACKGROUND: Chemical modifications on RNA profoundly impact RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human chronic kidney disease (CKD) samples regarding its influence on pathological mechanisms. METHODS: LC-MS/MS and Methylated RNA Immunoprecipitation (MeRIP) sequencing were utilized to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the impact of m6A in tubular cells and explore the biological functions of m6A modification on target genes. Additionally, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and the use of anti-sense oligonucleotides inhibiting Mettl3 expression were utilized to reduce m6A modification in an animal kidney disease model. RESULTS: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cGAS-STING pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1, as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of anti-sense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. CONCLUSIONS: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.

2.
J Am Chem Soc ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865191

RESUMO

We report here a new type of metal fluoride cluster that can be stabilized inside fullerene via in situ fluorine encapsulation followed by exohedral trifluoromethylation, giving rise to rare-earth metal fluoride clusterfullerenes (FCFs) M2F@C80(CF3) (M = Gd and Y). The molecular structure of Gd2F@C80(CF3) was unambiguously determined by single-crystal X-ray analysis to show a µ2-fluoride-bridged Gd-F-Gd cluster with short Gd-F bonds of 2.132(7) and 2.179(7) Å. The 19F NMR spectrum of the diamagnetic Y2F@C80(CF3) confirms the existence of the endohedral F atom, which exhibits a triplet with a large 19F-89Y coupling constant of 74 Hz and a high temperature sensitivity of the 19F chemical shift of 0.057 ppm/K. Theoretical studies reveal the ionic Y-F bonding nature arising from the highest electronegativity of the F element and an electronic configuration of [Y2F]5+@[C80]5- with an open-shell carbon cage, which thus necessitates the stabilization of FCFs by exohedral trifluoromethylation.

3.
J Am Chem Soc ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869355

RESUMO

Coupling two magnetic anisotropic lanthanide ions via a direct covalent bond is an effective way to realize high magnetization blocking temperature of single-molecule magnets (SMMs) by suppressing quantum tunneling of magnetization (QTM), whereas so far only single-electron lanthanide-lanthanide bonds with relatively large bond distances are stabilized in which coupling between lanthanide and the single electron dominates over weak direct 4f-4f coupling. Herein, we report for the first time synthesis of short Dy(II)-Dy(II) single bond (3.61 Å) confined inside a carbon cage in the form of an endohedral metallofullerene Dy2@C82. Such a direct Dy(II)-Dy(II) covalent bond renders a strong Dy-Dy antiferromagnetic coupling that effectively quenches QTM at zero magnetic field, thus opening up magnetic hysteresis up to 25 K using a field sweep rate of 25 Oe/s, concomitant with a high 100 s magnetization blocking temperature (TB,100s) of 27.2 K.

4.
Angew Chem Int Ed Engl ; : e202407551, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881501

RESUMO

Phosphorene and fullerene are representative two-dimensional (2D) and zero-dimensional (0D) nanomaterials respectively, constructing their heterodimensional hybrid not only complements their physiochemical properties but also extends their applications via synergistic interactions. This is however challenging because of their diversities in dimension and chemical reactivity, and theoretical studies predicted that it is improbable to directly bond C60 onto the surface of phosphorene due to their strong repulsion. Here, we develop a facile electrosynthesis method to synthesize the first phosphorene-fullerene hybrid featuring fullerene surface bonding via P-C bonds. Few-layer black phosphorus nanosheets (BPNSs) obtained from electrochemical exfoliation react with C602- dianion prepared by electroreduction of C60, fulfilling formation of the "improbable" phosphorene-fullerene hybrid (BPNS-s-C60). Theoretical results reveal that the energy barrier for formation of [BPNS-s-C60]2- intermediate is significantly decreased by 1.88 eV, followed by an oxidization reaction to generate neutral BPNS-s-C60 hybrid. Surface bonding of C60 molecules not only improves significantly the ambient stability of BPNSs, but also boosts dramatically the visible light and near-infrared (NIR) photocatalytic hydrogen evolution rates, reaching 1466 and 1039 µmol h-1 g-1 respectively, which are both the highest values among all reported BP-based metal-free photocatalysts.

5.
ACS Appl Mater Interfaces ; 16(23): 30534-30544, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38818656

RESUMO

Organic-inorganic hybrid perovskite solar cells (PSCs) have recently been demonstrated to be promising renewable harvesters because of their prominent photovoltaic power conversion efficiency (PCE), although their stability and efficiency still have not reached commercial criteria. Trouble-oriented analyses showcase that defect reduction among the grain boundaries and interfaces in the prepared perovskite polycrystalline films is a practical strategy, which has prompted researchers to develop functional molecules for interface passivation. Herein, the pyridine-based bifunctional molecule dimethylpyridine-3,5-dicarboxylate (DPDC) was employed as the interface between the electron-transport layer and perovskite layer, which achieved a champion PCE of 21.37% for an inverted MAPbI3-based PSC, which was greater than 18.64% for the control device. The mechanistic studies indicated that the significantly improved performance was mainly attributed to the remarkably enhanced fill factor with a value greater than 83%, which was primarily due to the nonradiative recombination suppression offered by the passivation effect of DPDC. Moreover, the promoted carrier mobility together with the enlarged crystal size contributed to a higher short-circuit current density. In addition, an increase in the open-circuit voltage was also observed in the DPDC-treated PSC, which benefited from the improved work function for reducing the energy loss during carrier transport. Furthermore, the DPDC-treated PSC showed substantially enhanced stability, with an over 80% retention rate of its initial PCE value over 300 h even at a 60% relative humidity level, which was attributed to the hydrophobic nature of the DPDC molecule and effective defect passivation. This work is expected not only to serve as an effective strategy for using a pyridine-based bifunctional molecule to passivate perovskite interfaces to enhance photovoltaic performance but also to shed light on the interface passivation mechanism.

6.
Adv Mater ; 36(24): e2313524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453665

RESUMO

Crystallization orientation plays a crucial role in determining the performance and stability of perovskite solar cells (PVSCs), whereas effective strategies for realizing oriented perovskite crystallization is still lacking. Herein, a facile and efficient top-down strategy is reported to manipulate the crystallization orientation via treating perovskite wet film with propylamine chloride (PACl) before annealing. The PA+ ions tend to be adsorbed on the (001) facet of the perovskite surface, resulting in the reduced cleavage energy to induce (001) orientation-dominated growth of perovskite film and then reduce the temperature of phase transition, meanwhile, the penetrating Cl ions further regulate the crystallization process. As-prepared (001)-dominant perovskite films exhibit the ameliorative film homogeneity in terms of vertical and horizontal scale, leading to alleviated lattice mismatch and lowered defect density. The resultant PVSC devices deliver a champion power conversion efficiency (PCE) of 25.07% with enhanced stability, and the unencapsulated PVSC device maintains 95% of its initial PCE after 1000 h of operation at the maximum power point under simulated AM 1.5G illumination.

8.
Chem Soc Rev ; 53(6): 2863-2897, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38324027

RESUMO

Magnetic lanthanide (Ln) metal complexes exhibiting magnetic bistability can behave as molecular nanomagnets, also known as single-molecule magnets (SMMs), suitable for storing magnetic information at the molecular level, thus attracting extensive interest in the quest for high-density information storage and quantum information technologies. Upon encapsulating Ln ion(s) into fullerene cages, endohedral metallofullerenes (EMFs) have been proven as a promising and versatile platform to realize chemically robust SMMs, in which the magnetic properties are able to be readily tailored by altering the configurations of the encapsulated species and the host cages. In this review, we present critical discussions on the molecular structures and magnetic characterizations of EMF-SMMs, with the focus on their peculiar molecular and electronic structures and on the intriguing molecular magnetism arising from such structural uniqueness. In this context, different families of magnetic EMFs are summarized, including mononuclear EMF-SMMs wherein single-ion anisotropy is decisive, dinuclear clusterfullerenes whose magnetism is governed by intramolecular magnetic interaction, and radical-bridged dimetallic EMFs with high-spin ground states that arise from the strong ferromagnetic coupling. We then discuss how molecular assemblies of SMMs can be constructed, in a way that the original SMM behavior is either retained or altered in a controlled manner, thanks to the chemical robustness of EMFs. Finally, on the basis of understanding the structure-magnetic property correlation, we propose design strategies for high-performance EMF-SMMs by engineering ligand fields, electronic structures, magnetic interactions, and molecular vibrations that can couple to the spin states.

9.
Nat Commun ; 15(1): 150, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167842

RESUMO

Metal carbido complexes bearing single-carbon-atom ligand such as nitrogenase provide ideal models of adsorbed carbon atoms in heterogeneous catalysis. Trimetallic µ3-carbido clusterfullerenes found recently represent the simplest metal carbido complexes with the ligands being only carbon atoms, but only few are crystallographically characterized, and its formation prerequisite is unclear. Herein, we synthesize and isolate three vanadium-based µ3-CCFs featuring V = C double bonds and high valence state of V (+4), including VSc2C@Ih(7)-C80, VSc2C@D5h(6)-C80 and VSc2C@D3h(5)-C78. Based on a systematic theoretical study of all reported µ3-carbido clusterfullerenes, we further propose a supplemental Octet Rule, i.e., an eight-electron configuration of the µ3-carbido ligand is needed for stabilization of metal carbido clusters within µ3-carbido clusterfullerenes. Distinct from the classic Effective Atomic Number rule based on valence electron count of metal proposed in the 1920s, this rule counts the valence electrons of the single-carbon-atom ligand, and offers a general rule governing the stabilities of µ3-carbido clusterfullerenes.

10.
Small ; : e2309827, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084461

RESUMO

Solution-processed photodetectors have emerged as promising candidates for next-generation of visible-near infrared (vis-NIR) photodetectors. This is attributed to their ease of processing, compatibility with flexible substrates, and the ability to tune their detection properties by integrating complementary photoresponsive semiconductors. However, the limited performance continues to hinder their further development, primarily influenced by the difference of charge transport properties between perovskite and organic semiconductors. In this work, a perovskite-organic bipolar photodetectors (PDs) is introduced with multispectral responsivity, achieved by effectively managing charges in perovskite and a ternary organic heterojunction. The ternary heterojunction, incorporating a designed NIR guest acceptor, exhibits a faster charge transfer rate and longer carrier diffusion length than the binary heterojunction. By achieving a more balanced carrier dynamic between the perovskite and organic components, the PD achieves a low dark current of 3.74 nA cm-2 at -0.2 V, a fast response speed of <10 µs, and a detectivity of exceeding 1012 Jones. Furthermore, a bioinspired retinotopic system for spontaneous chromatic adaptation is achieved without any optical filter. This charge management strategy opens up possibilities for surpassing the limitations of photodetection and enables the realization of high-purity, compact image sensors with exceptional spatial resolution and accurate color reproduction.

11.
Nat Commun ; 14(1): 8052, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052783

RESUMO

[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), a star molecule in the fullerene field, has found wide applications in materials science. Herein, electrosynthesis of buckyballs with fused-ring systems has been achieved through radical α-C-H functionalization of the side-chain ester for both PCBM and its analogue, [6,6]-phenyl-C61-propionic acid methyl ester (PCPM), in the presence of a trace amount of oxygen. Two classes of buckyballs with fused bi- and tricyclic carbocycles have been electrochemically synthesized. Furthermore, an unknown type of a bisfulleroid with two tethered [6,6]-open orifices can also be efficiently generated from PCPM. All three types of products have been confirmed by single-crystal X-ray crystallography. A representative intramolecularly annulated isomer of PCBM has been applied as an additive to inverted planar perovskite solar cells and boosted a significant enhancement of power conversion efficiency from 15.83% to 17.67%.

12.
J Am Chem Soc ; 145(46): 25440-25449, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955678

RESUMO

Despite decades of efforts, the actinide-carbon triple bond has remained an elusive target, defying synthesis in any isolable compound. Herein, we report the successful synthesis of uranium-carbon triple bonds in carbide-bridged bimetallic [U≡C-Ce] units encapsulated inside the fullerene cages of C72 and C78. The molecular structures of UCCe@C2n and the nature of the U≡C triple bond were characterized through X-ray crystallography and various spectroscopic analyses, revealing very short uranium-carbon bonds of 1.921(6) and 1.930(6) Å, with the metals existing in their highest oxidation states of +6 and +4 for uranium and cerium, respectively. Quantum-chemical studies further demonstrate that the C2n cages are crucial for stabilizing the [UVI≡C-CeIV] units through covalent and coordinative interactions. This work offers a new fundamental understanding of the elusive uranium-carbon triple bond and informs the design of complexes with similar bonding motifs, opening up new possibilities for creating distinctive molecular compounds and materials.

13.
ACS Nano ; 17(23): 23478-23487, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009599

RESUMO

Solar-driven water splitting powered by photovoltaics enables efficient storage of solar energy in the form of hydrogen fuel. In this work, we demonstrate efficient solar-to-hydrogen conversion using perovskite (PVK) tandem photovoltaics and a halogen-modulated metal-organic framework (MOF) electrocatalyst. By substituting tetrafluoroterephthalate (TFBDC) for terephthalic (BDC) ligands in a nickel-based MOF, we achieve a 152 mV improvement in oxygen evolution reaction (OER) overpotential at 10 mA·cm2. Through X-ray photoelectron spectroscopy (XPS), X-ray adsorption structure (XAS) analysis, theoretical simulation, and electrochemical results, we demonstrated that the introduction of fluorine atoms enhanced the intrinsic activity of Ni sites as well as the transfer property and accessibility of the MOF. Using this electrocatalyst in a bias-free photovoltaic electrochemical (PV-EC) system with a PVK/organic tandem solar cell, we achieve 6.75% solar-to-hydrogen efficiency (ηSTH). We also paired the electrocatalyst with a PVK photovoltaic module to drive water splitting at 206.7 mA with ηSTH of 10.17%.

14.
Front Public Health ; 11: 1212890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881345

RESUMO

Background: Most Chlamydia trachomatis (CT) infections are asymptomatic. The infection can persist and lead to severe sequelae. Therefore, screening for CT can primarily prevent serious sequelae. Aim: To systematically evaluate CT screening from the perspective of health economics, summarize previous findings from different target populations, and make practical recommendations for developing local CT screening strategies. Methods: PubMed, Web of Science, Embase, Cochran Library, and National Health Service Economic Evaluation Database (Ovid) were searched from January 1, 2000, to March 4, 2023. Studies reporting the cost-effectiveness, cost-benefit, or cost-utility of CT screening were eligible to be included. A narrative synthesis was used to analyze and report the results following the PRISMA guidelines. The Consensus on Health Economic Criteria (CHEC) list was used to assess the methodological quality of included studies. Results: Our review finally comprised 39 studies addressing four populations: general sexually active people (n = 25), pregnant women (n = 4), women attending STD and abortion clinics (n = 4), and other high-risk individuals (n = 6). The total number of participants was ~7,991,198. The majority of studies assessed the cost-effectiveness or cost-utility of the screening method. The results showed that the following screening strategies may be cost-effective or cost-saving under certain conditions: performing CT screening in young people aged 15-24 in the general population, military recruits, and high school students; incorporating CT screening into routine antenatal care for pregnant women aged 15-30; opportunistic CT screening for women attending STD and abortion clinics; home-obtained sampling for CT screening using urine specimens or vaginal swab; performing CT screening for 14-30-year-old people who enter correctional institutions (i.e., jail, detention) as soon as possible; providing CT screening for female sex workers (FSWs) based on local incidence and prevalence; adding routine CT screening to HIV treatment using rectal samples from men who have sex with men (MSM). Conclusion: We found that CT screening in general sexually active people aged 15-24, military recruits, high school students, pregnant women aged 15-30, women attending STD and abortion clinics, people entering jail, detention, FSWs, and MSM has health economic value. Due to the different prevalence of CT, diversities of economic conditions, and varying screening costs among different populations and different countries, regions, or settings, no uniform and standard screening strategies are currently available. Therefore, each country should consider its local condition and the results of health economic evaluations of CT screening programs in that country to develop appropriate CT screening strategies.


Assuntos
Infecções por Chlamydia , Profissionais do Sexo , Minorias Sexuais e de Gênero , Masculino , Humanos , Feminino , Gravidez , Adolescente , Adulto Jovem , Adulto , Chlamydia trachomatis , Homossexualidade Masculina , Medicina Estatal , Infecções por Chlamydia/diagnóstico
15.
J Am Chem Soc ; 145(41): 22599-22608, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37787921

RESUMO

Metal complexes bearing single-electron metal-metal bonds (SEMBs) exhibit unusual electronic structures evoking strong magnetic coupling, and such bonds can be stabilized in the form of dimetallofullerenes (di-EMFs) in which two metals are confined in a carbon cage. Up to now, only a few di-EMFs containing SEMBs are reported, which are all based on a high-symmetry icosahedral (Ih) C80 cage embedding homonuclear rare-earth bimetals, and a chemical modification of the Ih-C80 cage is required to stabilize the SEMB. Herein, by introducing 3d-block transition metal titanium (Ti) along with 4f-block lanthanum (La) into the carbon cage, we synthesized the first crystallographically characterized SEMB-containing 3d-4f heteronuclear di-EMFs based on pristine fullerene cages. Four novel La-Ti heteronuclear di-EMFs were isolated, namely, LaTi@D3h(5)-C78, LaTi@Ih(7)-C80, LaTi@D5h(6)-C80, and LaTi@C2v(9)-C82, and their molecular structures were unambiguously determined by single-crystal X-ray diffraction. Upon increasing the cage size from C78 to C82, the La-Ti distance decreases from 4.31 to 3.97 Å, affording fine-tuning of the metal-metal bonding and hyperfine coupling, as evidenced by an electron spin resonance (ESR) spectroscopic study. Density functional theory (DFT) calculations confirm the existence of SEMB in all four LaTi@C2n di-EMFs, and the accumulation of electron density between La and Ti atoms shifts gradually from the proximity of the Ti atom inside C78 to the center of the LaTi bimetal inside C82 due to the decrease of the La-Ti distance. The electronic properties of LaTi@C2n heteronuclear dimetallofullerenes differ apparently from their homonuclear La2@C2n counterparts, revealing the peculiarity of heteronuclear dimetallofullerenes with the involvement of 3d-block transition metal Ti.

16.
Adv Mater ; 35(51): e2304121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37805835

RESUMO

Encapsulating photoluminescent lanthanide ions like erbium (Er) into fullerene cages affords photoluminescent endohedral metallofullerenes (EMFs). Few reported photoluminescent Er-EMFs are all based on encapsulation of multiple (two to three) metal atoms, whereas mono-Er-EMFs exemplified by Er@C82 are not photoluminescent due to its narrow optical bandgap. Herein, by entrapping an Er-cyanide cluster into various C82 cages to form novel Er-monometallic cyanide clusterfullerenes (CYCFs), ErCN@C82 (C2 (5), Cs (6), and C2 v (9)), the photoluminescent properties of CYCFs are investigated, and obvious near-infrared (NIR) photoluminescence only is observed for ErCN@C2 (5)-C82 . Combined with a comparative photoluminescence study of three medium-bandgap di-Er-EMFs, including Er2 @Cs (6)-C82 , Er2 O@Cs (6)-C82 , and Er2 C2 @Cs (6)-C82 , this study proposes that the optical bandgap can be used as a simple criterion for switching the photoluminescence of Er-EMFs, and the bandgap threshold is determined to be between 0.83 and 0.74 eV. Furthermore, the photoluminescent patterns of these three di-Er-EMFs differ dramatically. It is found that the location of the Er atom within the same Cs (6)-C82 cage is almost fixed and independent on the endo-unit; thus the previous statement on the key role of metal position in photoluminescence of di-Er-EMFs seems erroneous, and the geometric configuration of the endo-unit, especially the bridging mode of two Er ions, is decisive instead.

17.
Angew Chem Int Ed Engl ; 62(46): e202313074, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37789646

RESUMO

Herein, we report divergent additions of 2,2'-diazidobiphenyls to C60 and Sc3 N@Ih -C80 . In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60 . In contrast, the corresponding reaction with Sc3 N@Ih -C80 switches to the C-H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5, whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.

18.
Acta Cardiol Sin ; 39(5): 709-719, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720403

RESUMO

Background: Angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) are commonly used for hypertension and cardiovascular diseases. However, whether their use increases the risk of acute kidney injury (AKI) and should be discontinued during acute illness remains controversial. Methods: This retrospective study enrolled 952 dialysis-free patients who were admitted to intensive care units (ICUs) between 2015 and 2017, including 476 premorbid long-term (> 1 month) ACEi/ARB users. Propensity score matching was performed to adjust for age, gender, comorbidities, and disease severity. The primary endpoint was the occurrence of AKI during hospitalization, and the secondary endpoint was mortality or dialysis within 1 year. Results: Compared with non-users, the ACEi/ARB users were not associated with an increased AKI risk during hospitalization [66.8% vs. 70.4%; hazard ratio (HR): 1.13, 95% confidence interval (CI): 0.97-1.32, p = 0.126]. However, the ACEi/ARB users with sepsis (HR: 1.29, 95% CI: 1.04-1.60, p = 0.021) or hypotension (HR: 1.21, 95% CI: 1.02-1.14, p = 0.034) were found to have an increased AKI risk in subgroup analysis. Nevertheless, compared with the non-users, the ACEi/ARB users were associated with a lower incidence of mortality or dialysis within 1 year (log-rank p = 0.011). Conclusions: Premorbid ACEi/ARB usage did not increase the incidence of AKI, and was associated with a lower 1-year mortality and dialysis rate in patients admitted to ICUs. Regarding the results of subgroup analysis, renin-angiotensin-aldosterone system blockade may still be safe and beneficial in the absence of sepsis or circulation failure. Further large-scale studies are needed to confirm our findings.

19.
Inorg Chem ; 62(32): 12976-12988, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37527419

RESUMO

Actinide endohedral metallofullerenes (EMFs) are a fullerene family that possess unique actinide-carbon cage host-guest molecular and electronic structures. In this work, a novel actinide EMF, U@Cs(4)-C82, was successfully synthesized and characterized, and its chemical reactivity was investigated. Crystallographic analysis shows that U@Cs(4)-C82, a new isomer of U@C82, has a Cs(4)-C82 cage, which has never been discovered in the form of empty or endohedral fullerenes. Its unique chemical reactivities were further revealed through the Bingel-Hirsch reaction and carbene addition reaction studies. The Bingel-Hirsch reaction of U@Cs(4)-C82 shows exceptionally high selectivity and product yield, yielding only one major addition adduct. Moreover, the addition sites for both reactions are unexpectedly located on adjacent carbon atoms far away from the actinide metal, despite the nucleophilic (Bingel-Hirsch) and electrophilic (carbene addition) nature of either reactant. Density functional theory (DFT) calculations suggest that this chemical behavior, unprecedented for EMFs, is directed by the unusually strong interaction between U and the sumanene motif of the carbon cage in U@Cs(4)-C82, which makes the energy increase when it is disrupted. This work reveals remarkable chemical properties of actinide EMFs originating from their unique electronic structures and highlights the key role of actinide-cage interactions in the determination of their chemical behaviors.

20.
Adv Mater ; 35(49): e2305946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37547965

RESUMO

Perovskite/organic tandem solar cells (POTSCs) are gaining attention due to their easy fabrication, potential to surpass the S-Q limit, and superior flexibility. However, the low power conversion efficiencies (PCEs) of wide bandgap (Eg) perovskite solar cells (PVSCs) have hindered their development. This work presents a novel and effective mixed-cation passivation strategy (CE) to passivate various types of traps in wide-Eg perovskite. The complementary effect of 4-trifluoro phenethylammonium (CF3 -PEA+ , denoted as CA+ ) and ethylenediammonium (EDA2+ , denoted as EA2+ ) reduces both electron/hole defect densities and non-radiative recombination rate, resulting in a record open-circuit voltage (Voc ) of wide-Eg PVSCs (1.35 V) and a high fill factor (FF) of 83.29%. These improvements lead to a record PCE of 24.47% when applied to fabricated POTSCs, the highest PCE to date. Furthermore, unencapsulated POTSCs exhibit excellent photo and thermal stability, retaining over 90% of their initial PCE after maximum power point (MPP) tracking or exposure to 60 °C for 500 h. These findings imply that the synergic effect of surface passivators is a promising strategy to achieve high-efficiency and stable wide-Eg PVSCs and corresponding POTSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA