RESUMO
Natural killer (NK) cells are the promoters in graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), while demethylation can regulate NK cell function. We explored the mechanism of demethylation regulating NK cell function to affect GVHD after allo-HSCT. BALB/c mice were transfused with C57BL/6 mouse-derived NK and bone marrow cells to establish GVHD models, followed by isolation and in-vitro expansion of NK cells. NK cell purity, cytokine levels, proliferation, and cytokine-producing NK cell levels were measured via flow cytometry. KIR2DL1/2/3 methylation was tested by Methylation-specific polymerase chain reaction (MSP), with determination of mouse survival and GVHD scores. KIR2DL1/2/3 and DNMT1 expression was detected through qRT-PCR and/or western blot. Methylation levels were upregulated and KIR2DL1/2/3 expression was downregulated in GVHD mouse model-derived NK cells following IL-2 stimulation. DNMT1 silencing promoted KIR2DL1/2/3 expression, proliferation, and the secretion of Granzyme, Perforin, and Interferon-γ (IFN-γ) in C57BL/6 mouse-derived NK cells. DNMT1 silencing also enhanced mouse survival, reduced GVHD scores, promoted KIR2DL1/2/3 expression on the NK cell surface, and increased the secretion of Granzyme, Perforin, IFN-γ, and the number of cytokine-producing NK cells in the spleen, liver, and lung tissues of the models. Collectively, DNMT1 silencing induced KIR2DL1/2/3 expression in NK cells through reducing methylation to alleviate GVHD after allo-HSCT.
RESUMO
Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by complex molecular and cytogenetic abnormalities. Pro-oxidant cellular redox status is a common hallmark of AML cells, providing a rationale for redox-based anticancer strategy. We previously discovered that auranofin (AUF), initially used for the treatment of rheumatoid arthritis and repositioned for its anticancer activity, can synergize with a pharmacological concentration of vitamin C (VC) against breast cancer cell line models. In this study, we observed that this drug combination synergistically and efficiently killed cells of leukaemic cell lines established from different myeloid subtypes. In addition to an induced elevation of reactive oxygen species and ATP depletion, a rapid dephosphorylation of 4E-BP1 and p70S6K, together with a strong inhibition of protein synthesis were early events in response to AUF/VC treatment, suggesting their implication in AUF/VC-induced cytotoxicity. Importantly, a study on 22 primary AML specimens from various AML subtypes showed that AUF/VC combinations at pharmacologically achievable concentrations were effective to eradicate primary leukaemic CD34+ cells from the majority of these samples, while being less toxic to normal cord blood CD34+ cells. Our findings indicate that targeting the redox vulnerability of AML with AUF/VC combinations could present a potential anti-AML therapeutic approach.
Assuntos
Ácido Ascórbico , Auranofina , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Oxirredução , Auranofina/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Ácido Ascórbico/farmacologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Masculino , Pessoa de Meia-Idade , IdosoRESUMO
Introduction: Klebsiella pneumoniae (K. pneumoniae) is the most common pathogen causing hospital respiratory tract infection and epidemic. Gold standard procedures of microscopic examination and biochemical identification are widely used in clinical diagnosis with disadvantages of low sensitivity, time-consuming and sophisticated equipment requiring. An efficient, nucleic acid amplification-based sensitive and specific on-site identification of K. pneumoniae in clinical is necessary to facilitate clinical medication and disease control. Methods: We developed a closed dumbbell mediated isothermal amplification (CDA) assay for the rapid and sensitive detection of conserved rcsA gene in K. pneumoniae by real-time fluorescence monitoring and end-point colorimetric judgement. We designed and selected a pair of inner primers of CDA to detect K. pneumoniae. Then outer and loop primers were designed and verified to accelerate CDA reaction to achieve more efficient detection of K. pneumoniae. Results: The results showed the detection limit of CDA assay was 1.2 × 10-5 ng/µL (approximately 1 copy of the target gene) within 60 min, which was 100-fold more sensitive than real-time quantitative PCR (qPCR). Several pathogen genomic DNAs (Staphylococcus aureus, Shigella sonnei, Vibrio parahaemolyticus, Escherichia coli, Candida glabrata, Candida tropicalis, Candida parapsilosis, Candida albicans, Streptococcus agalactiae, Rickettsia, Listeria monocytogenes, Pseudomonas aeruginosa, Klebsiella oxytoca, and Klebsiella aerogenes) were used to evaluate the sensitivity and specificity of the established K. pneumoniae CDA assay. Total 224 batches of samples from other strains tested were negative and 296 batches of extracted K. pneumoniae DNA samples were positive by the developed CDA amplification approach, revealing high specificity and specificity of the diagnostic assay. In addition, the results of real-time fluorescence amplification of the K. pneumoniae CDA were in consistent with those of end-point colorimetric results. Discussion: The established real-time fluorescence and visual CDA assays of K. pneumoniae with merits of rapid, sensitive and specificity could be helpful for on-site diagnosis and clinical screening in rural areas.
RESUMO
INTRODUCTION: Hepatocellular carcinoma (HCC) is characterized by the complex pathogenesis, limited therapeutic methods, and poor prognosis. Endoplasmic reticulum stress (ERS) plays an important role in the development of HCC, therefore, we still need further study of molecular mechanism of HCC and ERS for early diagnosis and promising treatment targets. METHOD: The GEO datasets (GSE25097, GSE62232, and GSE65372) were integrated to identify differentially expressed genes related to HCC (ERSRGs). Random Forest (RF) and Support Vector Machine (SVM) machine learning techniques were applied to screen ERSRGs associated with endoplasmic reticulum stress, and an artificial neural network (ANN) diagnostic prediction model was constructed. The ESTIMATE algorithm was utilized to analyze the correlation between ERSRGs and the immune microenvironment. The potential therapeutic agents for ERSRGs were explored using the Drug Signature Database (DSigDB). The immunological landscape of the ERSRGs central gene PPP1R16A was assessed through single-cell sequencing and cell communication, and its biological function was validated using cytological experiments. RESULTS: An ANN related to the ERS model was constructed based on SRPX, THBS4, CTH, PPP1R16A, CLGN, and THBS1. The area under the curve (AUC) of the model in the training set was 0.979, and the AUC values in three validation sets were 0.958, 0.936, and 0.970, respectively, indicating high reliability and effectiveness. Spearman correlation analysis suggests that the expression levels of ERSRGs are significantly correlated with immune cell infiltration and immune-related pathways, indicating their potential as important targets for immunotherapy. Mometasone was predicted to be the most promising treatment drug based on its highest binding score. Among the six ERSRGs, PPP1R16A had the highest mutation rate, predominantly copy number mutations, which may be the core gene of the ERSRGs model. Single-cell analysis and cell communication indicated that PPP1R16A is predominantly distributed in liver malignant parenchymal cells and may reshape the tumor microenvironment by enhancing macrophage migration inhibitory factor (MIF)/CD74 + CXCR4 signaling pathways. Functional experiments revealed that after siRNA knockdown, the expression of PPP1R16A was downregulated, which inhibited the proliferation, migration, and invasion capabilities of HCCLM3 and Hep3B cells in vitro. CONCLUSION: The consensus of various machine learning algorithms and artificial intelligence neural networks has established a novel predictive model for the diagnosis of liver cancer associated with ERS. This study offers a new direction for the diagnosis and treatment of HCC.
Assuntos
Carcinoma Hepatocelular , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Redes Neurais de Computação , Análise de Célula Única , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Estresse do Retículo Endoplasmático/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Imunidade/genética , Bases de Dados GenéticasRESUMO
Background: Contrast-induced acute kidney injury (CI-AKI) is a serious and common complication following the use of iodinated contrast media, with a 20% fatality rate. The function of long non-coding RNA HILPDA (lnc-HILPDA) in CI-AKI development was investigated in this study. Methods: CI-AKI models were constructed by iopromide treatment. Kidney pathological changes were analyzed by HE staining. TUNEL labeling and flow cytometry were used to examine cell apoptosis. CCK-8 assay was used to determine cell viability. The interactions between lnc-HILPDA, eIF4B, and XPO1 were verified by RIP or Co-IP assay. Results: Lnc-HILPDA was upregulated in CI-AKI, and its knockdown decreased contrast-trigged oxidative stress and apoptosis in HK-2 cells. Mechanically, lnc-HILPDA activated the NF-κB pathway by upregulating XPO1 through interacting with eIF4B. Moreover, the inhibitory effect of lnc-HILPDA downregulation on contrast-induced oxidative stress and apoptosis in HK-2 cells was weakened by XPO1 overexpression. Conclusion: Lnc-HILPDA accelerated CI-AKI progression by elevating XPO1 expression through eIF4B to activate NF-κB pathway.
RESUMO
BACKGROUND: Multiple myeloma cancer stem cells (MMSC) have been considered as the leading cause of multiple myeloma (MM) drug resistance and eventual relapse, microRNAs (miRNAs) collectively participate in the progression of MM. However, the pathogenesis of miR-138 in MMSC is still not fully understood. OBJECTIVE: The intention of this study was to investigate the mechanism and role of miR-138 in multiple myeloma. METHOD: Bone marrow samples and peripheral blood from patients and normal controls were collected. Use Magnet-based Cancer Stem Cell Isolation Kit to separate and extract MMSC. Real-time quantitative PCR (RT-qPCR) was carried out to determine mRNA level. Western blot was applied to detect protein levels. MTT and flow cytometry were conducted to examine the proliferation and apoptosis of MMSC. Finally, dual-luciferase reporter gene assays were performed to confirm that paired box 5 (PAX5) is a direct target for miR-138. RESULTS: Compared with normal group, the expression of miR-138 in patients was significantly up-regulated, and the expression of miR-138 was in a negative correlation with PAX5. Additionally, downregulated miR-138 facilitated the apoptosis and inhibited the proliferation of MMSC in vitro and in vivo. Downregulated miR-138 moderated the expression of PAX5, Bcl-2, Bax, and Caspase-3. PAX5 was a direct target of miR-138. CONCLUSION: Taken together, miR-138 plays a carcinogenic role in MM, and miR-138 adjusted the proliferation and apoptosis of MMSC by targeting PAX5. miR-138 has the probability of becoming a new medicinal target for the treatment of MM.
RESUMO
OBJECTIVE: Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by abnormal myeloid blast expansion. Recent studies have demonstrated that circular RNAs play a role in AML pathogenesis. In this study, we aimed to investigate the clinical significance of circ_0012152 in AML and elucidate its underlying molecular mechanism in the pathogenesis of this condition. METHODS: Circ_0012152 expression was detected by quantitative real-time polymerase chain reaction in samples obtained from 247 patients with AML and 40 healthy controls. A systematic analysis of clinical characteristics and prognostic factors was also conducted. Cell growth was assessed using the Cell Counting Kit-8 (CCK-8) assay, and apoptosis and cell cycle progression were evaluated by flow cytometry. Moreover, RNA pull-down was performed to identify target microRNAs, and transcriptome RNA sequencing and bioinformatics analyses were utilized to identify downstream mRNA targets. RESULTS: Circ_0012152 was significantly upregulated in samples from patients with AML and served as an independent adverse prognostic factor for overall survival (OS) (hazard ratio: 2.357; 95% confidence interval 1.258-4.415). The circ_0012152 knockdown reduced cell growth, increased apoptosis, and inhibited cell cycle progression in AML cell lines. RNA pull-down and sequencing identified miR-652-3p as a target microRNA of circ_0012152. Cell growth inhibition by circ_0012152 knockdown was significantly relieved by miR-652-3p inhibitors. We suggested that miR-652-3p targeted SOX4, as the decrease in SOX4 expression resulting from circ_0012152 knockdown was upregulated by miR-652-3p inhibitors in AML cells. CONCLUSION: Circ_0012152 is an independent poor prognostic factor for OS in AML, and it promotes AML cell growth by upregulating SOX4 through miR-652-3p.
Assuntos
Leucemia Mieloide Aguda , MicroRNAs , RNA Circular , Fatores de Transcrição SOXC , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Prognóstico , RNA Circular/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Regulação para Cima/genéticaRESUMO
BACKGROUND: Myocardial infarction (MI) leads to enhanced activity of cardiac fibroblasts (CFs) and abnormal deposition of extracellular matrix proteins, resulting in cardiac fibrosis. Tartrate-resistant acid phosphatase 5 (ACP5) has been shown to promote cell proliferation and phenotypic transition. However, it remains unclear whether ACP5 is involved in the development of cardiac fibrosis after MI. The present study aimed to investigate the role of ACP5 in post-MI fibrosis and its potential underlying mechanisms. METHODS: Clinical blood samples were collected to detect ACP5 concentration. Myocardial fibrosis was induced by ligation of the left anterior descending coronary artery. The ACP5 inhibitor, AubipyOMe, was administered by intraperitoneal injection. Cardiac function and morphological changes were observed on Day 28 after injury. Cardiac CFs from neonatal mice were extracted to elucidate the underlying mechanism in vitro. The expression of ACP5 was silenced by small interfering RNA (siRNA) and overexpressed by adeno-associated viruses to evaluate its effect on CF activation. RESULTS: The expression of ACP5 was increased in patients with MI, mice with MI, and mice with Ang II-induced fibrosis in vitro. AubipyOMe inhibited cardiac fibrosis and improved cardiac function in mice after MI. ACP5 inhibition reduced cell proliferation, migration, and phenotypic changes in CFs in vitro, while adenovirus-mediated ACP5 overexpression had the opposite effect. Mechanistically, the classical profibrotic pathway of glycogen synthase kinase-3ß (GSK3ß)/ß-catenin was changed with ACP5 modulation, which indicated that ACP5 had a positive regulatory effect. Furthermore, the inhibitory effect of ACP5 deficiency on the GSK3ß/ß-catenin pathway was counteracted by an ERK activator, which indicated that ACP5 regulated GSK3ß activity through ERK-mediated phosphorylation, thereby affecting ß-catenin degradation. CONCLUSION: ACP5 may influence the proliferation, migration, and phenotypic transition of CFs, leading to the development of myocardial fibrosis after MI through modulating the ERK/GSK3ß/ß-catenin signaling pathway.
Assuntos
Proliferação de Células , Fibrose , Infarto do Miocárdio , Fosfatase Ácida Resistente a Tartarato , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fosfatase Ácida Resistente a Tartarato/genética , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Movimento CelularRESUMO
INTRODUCTION: Fruquintinib is approved in China for patients with metastatic colorectal cancer (CRC) who progressed after 2 lines of chemotherapy. This postmarketing study was conducted to evaluate the safety of fruquintinib in the Chinese population, including previously treated patients with advanced CRC and other solid tumors. METHODS: Patients in the first cycle of fruquintinib or expected to start fruquintinib within a week were enrolled. Fruquintinib was administrated according to the label or per physicians' discretion. Patient characteristics and safety information were collected at baseline, 1 month, and 6 months after consent (or 30 days after the last dose). RESULTS: Overall, 3005 patients enrolled between April 24, 2019 and September 27, 2022. All enrolled patients received at least one dose of fruquintinib. Most patients had metastases at baseline. The median age was 60 years. More than half (64.0%) of the patients started fruquintinib at 5 mg, and the median treatment exposure was 2.7 months. Nearly one-third (32.5%) of patients with CRC received fruquintinib with concomitant antineoplastic agents. Treatment-emergent adverse events (TEAEs) leading to dose modification were reported in 626 (20.8%) patients, and 469 (15.6%) patients experienced TEAEs leading to treatment discontinuation. The most common grade ≥ 3 TEAEs were hypertension (6.6%), palmar-plantar erythrodysesthesia syndrome (2.2%), and platelet count decreased (1.0%). Combination therapy did not lead to excessive toxicities. CONCLUSIONS: The safety profile of fruquintinib in the real world was generally consistent with that in clinical studies, and the incidence of TEAEs was numerically lower than known VEGF/VEGFR inhibitor-related AEs. Fruquintinib exhibited manageable safety and tolerability in Chinese patients in the real-world setting.
Assuntos
Benzofuranos , Neoplasias Colorretais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Benzofuranos/efeitos adversos , Benzofuranos/uso terapêutico , Benzofuranos/administração & dosagem , Adulto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Quinazolinas/efeitos adversos , Quinazolinas/uso terapêutico , Quinazolinas/administração & dosagem , China , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , População do Leste AsiáticoRESUMO
Period circadian regulator 3 (PER3) functions as a tumor suppressor in various cancers. However, the role of PER3 in multiple myeloma (MM) has not been reported yet. Through this study, we aimed to investigate the potential role of PER3 in MM and the underlying mechanisms. RT-qPCR and western blotting were used to determine the mRNA and protein expression levels of PER3. Glyoxylate reductase 1 homolog (GLYR1) was predicted to be a transcription factor of PER3. The binding sites of GLYR1 on the promoter region of PER3 were analyzed using UCSC and confirmed using luciferase and chromatin immunoprecipitation assays. Viability, apoptosis, and metathesis were determined using CCK-8, colony formation, TUNEL, and transwell assays. We found that PER3 expression decreased in MM. Low PER3 levels may predict poor survival rates; PER3 overexpression suppresses the viability and migration of MM cells and promotes apoptosis. Moreover, GLYR1 transcriptionally activates PER3, and the knockdown of PER3 alleviates the effects of GLYR1 and induces its malignant behavior in MM cells. To conclude, GLYR1 upregulates PER3 and suppresses the aggressive behavior of MM cells, suggesting that GLYR1/PER3 signaling may be a potential therapeutic target for MM.
Assuntos
Movimento Celular , Proliferação de Células , Mieloma Múltiplo , Proteínas Circadianas Period , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Apoptose , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: This study investigates the inhibitory mechanism of anlotinib on human Mantle Cell Lymphoma (MCL) cells through in vitro and in vivo experiments. METHODS: In vitro cellular experiments validate the effects of anlotinib on MCL cell proliferation and apoptosis. Moreover, a subcutaneous xenograft nude mice model of Mino MCL cells was established to assess the anti-tumour effect and tumour microenvironment regulation of anlotinib in vivo. RESULTS: The results indicate that MCL cell proliferation was significantly inhibited upon anlotinib exposure. The alterations in the expression of apoptosis-related proteins further confirm that anlotinib can induce apoptosis in MCL cells. Additionally, anlotinib significantly reduced the PI3K/Akt/mTOR phosphorylation level in MCL cells. The administration of a PI3K phosphorylation agonist, 740YP, could reverse the inhibitory effect of anlotinib on MCL. In the xenograft mouse model using Mino MCL cells, anlotinib treatment led to a gradual reduction in body weight and a significant increase in survival time compared to the control group. Additionally, anlotinib attenuated PD-1 expression and elevated inflammatory factors, CD4, and CD8 levels in tumour tissues. CONCLUSION: Anlotinib effectively inhibits proliferation and induces apoptosis in MCL both in vitro and in vivo. This inhibition is likely linked to suppressing phosphorylation in the PI3K/Akt/mTOR pathway.
RESUMO
Hypertension, a prevalent cardiovascular ailment globally, can precipitate numerous complications, notably hypertensive cardiomyopathy. Meteorin-like (METRNL) is demonstrated to possess potential protective properties on cardiovascular diseases. However, its specific role and underlying mechanism in hypertensive myocardial hypertrophy remain elusive. Spontaneously hypertensive rats (SHRs) served as hypertensive models to explore the effects of METRNL on hypertension and its induced myocardial hypertrophy. The research results indicate that, in contrast to Wistar-Kyoto (WKY) rats, SHRs exhibit significant symptoms of hypertension and myocardial hypertrophy, but cardiac-specific overexpression (OE) of METRNL can partially ameliorate these symptoms. In H9c2 cardiomyocytes, METRNL suppresses Ang II-induced autophagy by controlling the BRCA2/Akt/mTOR signaling pathway. But when BRCA2 expression is knocked down, this effect will be suppressed. Collectively, METRNL emerges as a potential therapeutic target for hypertensive cardiomyopathy.
Assuntos
Cardiomiopatias , Hipertensão , Ratos , Animais , Ratos Endogâmicos WKY , Cardiomegalia/genética , Cardiomegalia/tratamento farmacológico , Hipertensão/complicações , Hipertensão/genética , Hipertensão/tratamento farmacológico , Ratos Endogâmicos SHR , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Autofagia/genéticaRESUMO
KN046, a bispecific antibody targeting PD-L1 and CTLA-4, presents a promising therapeutic option for metastatic non-small cell lung cancer (NSCLC). In this multicenter phase 2 trial, patients with nonsquamous (non-sq) NSCLC receive pemetrexed, whereas those with sq-NSCLC receive paclitaxel, plus KN046 and carboplatin. Following four cycles, maintenance therapy includes KN046 with pemetrexed for non-sq-NSCLC and KN046 for sq-NSCLC. The objective response rate is 46.0%, and the median duration of response is 8.1 months. The median progression-free and overall survival are 5.8 and 26.6 months, respectively. The common adverse events include anemia (87.4%), loss of appetite (72.4%), and neutropenia (70.1%). The most prevalent immune-related adverse event is pruritus (28.7%). These findings indicate that first-line treatment with KN046 and chemotherapy is effective and tolerable in metastatic NSCLC patients, warranting further investigation in a larger phase 3 trial. The trial is registered at ClinicalTrials.gov (NCT04054531).
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Pemetrexede/uso terapêutico , Neoplasias Pulmonares/patologia , Antígeno B7-H1 , Antígeno CTLA-4 , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêuticoRESUMO
Although antiprogrammed death 1 antibody plus chemotherapy has recently been approved for first-line esophageal squamous cell carcinoma (ESCC), antiprogrammed death-ligand 1 antibody may offer another combination option in this setting. In this multicenter, randomized, double-blinded phase 3 trial a total of 540 adults (aged 18-75 years) with unresectable, locally advanced, recurrent or metastatic ESCC and who had not received systemic treatment were enrolled. All patients were randomized at 2:1 to receive either sugemalimab (an anti-PD-L1 antibody; 1,200 mg) or placebo every 3 weeks for up to 24 months, plus chemotherapy (cisplatin 80 mg m-2 on day 1 plus 5-fluorouracil 800 mg m-2 day-1 on days 1-4) every 3 weeks for up to six cycles. At the prespecified interim analysis this study had met dual primary endpoints. With a median follow-up of 15.2 months, the prolongation of progression-free survival was statistically significant with sugemalimab plus chemotherapy compared with placebo plus chemotherapy (median 6.2 versus 5.4 months, hazard ratio 0.67 (95% confidence interval 0.54-0.82), P = 0.0002) as assessed by blinded independent central review. Overall survival was also superior with sugemalimab chemotherapy (median 15.3 versus 11.5 months, hazard ratio 0.70 (95% confidence interval 0.55-0.90, P = 0.0076). A significantly higher objective response rate (60.1 versus 45.2%) as assessed by blinded independent central review was observed with sugemalimab chemotherapy. The incidence of grade 3 or above treatment-related adverse events (51.3 versus 48.4%) was comparable between the two groups. Sugemalimab plus chemotherapy significantly prolonged progression-free survival and overall survival in treatment-naïve patients with advanced ESCC, with no unexpected safety signal. The ClinicalTrials.gov identifier is NCT04187352 .
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Adulto , Humanos , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Cisplatino/efeitos adversos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Pessoa de Meia-Idade , IdosoRESUMO
BACKGROUND: Xenograft kidney transplantation has been receiving increasing attention. The purpose of this study is to use bibliometric analysis to identify papers in this research field and explore their current status and development trends. METHODS: Using the data in the Web of Science core database from Clarivate Analytics as the object of study, we used 'TS = Kidney OR Renal AND xenotransplantation' as the search term to find all literature from 1980 to 2 November 2022. RESULTS: In total, 1005 articles were included. The United States has the highest number of publications and has made significant contributions in this field. Harvard University was at the forefront of this study. Professor Cooper has published 114 articles in this field. Xenotransplantation has the largest number of relevant articles. Transplantation was the most cited journal. High-frequency keywords illustrated the current state of development and future trends in xenotransplantation. The use of transgenic pigs and the development of coordinated co-stimulatory blockers have greatly facilitated progress in xenotransplantation research. We found that 'co-stimulation blockade', 'xenograft survival', 'pluripotent stem cell', 'translational research', and 'genetic engineering' were likely to be the focus of attention in the coming years. CONCLUSIONS: This study screened global publications related to xenogeneic kidney transplantation; analyzed their literature metrology characteristics; identified the most cited articles in the research field; understood the current situation, hot spots, and trends of global research; and provided future development directions for researchers and practitioners.
Assuntos
Transplante de Rim , Rim , Humanos , Animais , Suínos , Transplante Heterólogo , Rim/cirurgia , Bibliometria , Bases de Dados FactuaisRESUMO
Resting heart rate (RHR) has been linked to impaired cortical structure in observational studies. However, the extent to which this association is potentially causal has not been determined. Using genetic data, this study aimed to reveal the causal effect of RHR on brain cortical structure. A Two-Sample Mendelian randomization (MR) analysis was conducted. Sensitivity analyses, weighted median, MR Pleiotropy residual sum and outlier, and MR-Egger regression were conducted to evaluate heterogeneity and pleiotropy. A causal relationship between RHR and cortical structures was identified by MR analysis. On the global scale, elevated RHR was found to decrease global surface area (SA; P < 0.0125). On a regional scale, the elevated RHR significantly decreased the SA of pars triangularis without global weighted (P = 1.58 × 10-4) and the thickness (TH) of the paracentral with global weighted (P = 3.56 × 10-5), whereas it increased the TH of banks of the superior temporal sulcus in the presence of global weighted (P = 1.04 × 10-4). MR study provided evidence that RHR might be causally linked to brain cortical structure, which offers a different way to understand the heart-brain axis theory.
Assuntos
Encéfalo , Análise da Randomização Mendeliana , Frequência Cardíaca , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Área de Broca , Estudo de Associação Genômica AmplaRESUMO
Musashi-2 (MSI2), implicated in the oncogenesis and propagation of a broad array of malignancies, inclusive of certain leukemia, remains a nascent field of study within the context of acute lymphoblastic leukemia (ALL). Using lentiviral transfection, ALL cells with stable MSI2 knockdown were engineered. A suite of analytic techniques - a CCK-8 assay, flow cytometry, qRT-PCR, and western blotting - were employed to evaluate cellular proliferation, cell cycle arrest, and apoptosis and to confirm differential gene expression. The suppression of MSI2 expression yielded significant results: inhibition of cell proliferation, G0/G1 cell cycle arrest, and induced apoptosis in ALL cell lines. Furthermore, it was noted that MSI2 inhibition heightened the responsiveness of ALL cells to dexamethasone. Significantly, the depletion of MSI2 prompted the translocation of GR from the cytoplasm to the nucleus upon dexamethasone treatment, consequently leading to enhanced sensitivity. Additionally, the FOXO1/4 signaling pathway contributed to the biological effects of ALL cells evoked by MSI2 silencing. Our study offers novel insight into the inhibitory effects of MSI2 suppression on ALL cells, positing MSI2 as a promising therapeutic target in the treatment of ALL.
Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Regulação para Baixo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proliferação de Células , Transdução de Sinais , Apoptose , Dexametasona/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologiaRESUMO
Epstein-Barr Virus (EBV) infection is closely associated with the development of lymphoma, as it plays a significant role in the malignant transformation of lymphocytes. The expression of programmed death-1 (PD-1), which binds to PD-L1 in tumor cells, can lead to immune evasion by lymphoma cells and promote tumor progression. In this study, immortalized B lymphoblastoid cell lines (B-LCLs) positive for EBV-specific proteins were established from human peripheral mononuclear cells (PBMCs) using EBV induction along with CpG-ODN 2006 and cyclosporin A. EBV-specific T cells (EBVST) were generated by multiple immunizations of CD3+ T lymphocytes using irradiated B-LCLs. Flow cytometry analysis confirmed the activation of EBVST through the detection of CD3+, CD4+, and CD8+ markers. Co-incubation of EBVST with EBV-positive B lymphocyte cell lines resulted in the secretion of perforin by EBVST, leading to granzyme B-mediated cell death and an increase in LDH levels. Silencing PD-1 in EBVST cells enhanced perforin production, increased granzyme B release, and upregulated cell death in co-incubated B lymphocytes. In a nude mice tumor transplantation model, silencing PD-1 in combination with EBV-specific killer T cells exhibited the maximum inhibition of B-lymphoblastoma. This treatment upregulated the expression of proteins associated with apoptosis and immune response, while inhibiting anti-apoptotic protein expression in tumor tissues. Silencing PD-1 also increased the infiltration of EBV-specific killer T cells in the tumor tissues. Overall, PD-1 silencing enhanced the tumor targeting effect of EBV-specific killer T cells on EBV-infected B lymphocytes and attenuated the immune escape effect mediated by the PD-1 pathway.
RESUMO
BACKGROUND: Mitofusin 2 (MFN2) plays an important role in many tumors, but how its role in renal clear cell carcinoma needs further research. METHODS: In this study, we analyzed the expression of MFN2 in renal clear cell carcinoma tissues and normal kidney tissues through the Cancer Genome Atlas (TCGA) database and our clinical samples.Enrichment analysis was performed to determine MFN2-related pathways and biological functions. The correlation of MFN2 expression with immune cells was analyzed.The correlation of the expression of methylation and the methylation sites of MFN2 were analyzed by UALCAN and TCGA databases. Univariate / multivariate COX risk regression and Kaplan-Meier methods were used to determine the prognostic value of MFN2.Nomograms were drawn to predict overall survival (OS) at 1,3, and 5 years. We investigated the role of MFN2 in renal cancer cells using CCK 8, clone formation, wound healing assay, and methylase qPCR experiments. RESULTS: MFN2 is poorly expressed in renal clear cell carcinoma compared to normal kidney tissue,and is significantly negatively associated with TNM stage, histological grade and pathological stage.MFN2 was directly associated with OS after multivariate Cox regression analysis.MFN2 shows a hypomethylation state and shows a positive correlation with multiple methylation sites.Signaling pathways through functional enrichment to B-cell receptors and oxidative stress-induced senescence.Moreover, the low expression of MFN2 was positively correlated with the degree of immune cell infiltration in a variety of immune cells.In vitro experiments showed that overexpression of MFN2 significantly inhibited the proliferation and migration of renal clear cells and promoted methylation. CONCLUSIONS: In conclusion, MFN2 can be used as a novel prognostic marker for renal clear cell carcinoma and requires further investigation of its role in tumor development.