Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308515

RESUMO

Several studies have investigated changes in microbial community composition in thawing permafrost landscapes, but microbial assemblages in the transient ecosystems of the Arctic coastline remain poorly understood. Thermokarst lakes, abrupt permafrost thaw features, are widespread along the pan-Arctic coast and transform into thermokarst lagoons upon coastal erosion and sea-level rise. This study looks at the effect of marine water inundation (imposing a sulfate-rich, saline environment on top of former thermokarst lake sediments) on microbial community composition and the processes potentially driving microbial community assembly. In the uppermost lagoon sediment influenced from marine water inflow, the microbial structures were significantly different from those deeper in the lagoon sediment and from those of the lakes. In addition, they became more similar along depth compared with lake communities. At the same time, the diversity of core microbial consortia community decreased compared with the lake sediments. This work provides initial observational evidence that Arctic thermokarst lake to lagoon transitions do not only substantially alter microbial communities but also that this transition has a larger effect than permafrost thaw and lake formation history.


Assuntos
Microbiota , Pergelissolo , Lagos/química , Regiões Árticas , Água
2.
Sci Rep ; 13(1): 2799, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797352

RESUMO

To explore the contributions of ω-3 fatty acid desaturases (FADs) to cold stress response in a special cryophyte, Chorispora bungeana, two plastidial ω-3 desaturase genes (CbFAD7, CbFAD8) were cloned and verified in an Arabidopsis fad7fad8 mutant, before being compared with the microsomal ω-3 desaturase gene (CbFAD3). Though these genes were expressed in all tested tissues of C. bungeana, CbFAD7 and CbFAD8 have the highest expression in leaves, while CbFAD3 was mostly expressed in suspension-cultured cells. Low temperatures resulted in significant increases in trienoic fatty acids (TAs), corresponding to the cooperation of CbFAD3 and CbFAD8 in cultured cells, and the coordination of CbFAD7 and CbFAD8 in leaves. Furthermore, the cold induction of CbFAD8 in the two systems were increased with decreasing temperature and independently contributed to TAs accumulation at subfreezing temperature. A series of experiments revealed that jasmonie acid and brassinosteroids participated in the cold-responsive expression of ω-3 CbFAD genes in both C. bungeana cells and leaves, while the phytohormone regulation in leaves was complex with the participation of abscisic acid and gibberellin. These results point to the hormone-regulated non-redundant contributions of ω-3 CbFADs to maintain appropriate level of TAs under low temperatures, which help C. bungeana survive in cold environments.


Assuntos
Arabidopsis , Brassicaceae , Temperatura , Reguladores de Crescimento de Plantas/metabolismo , Brassicaceae/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811358

RESUMO

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Assuntos
Sedimentos Geológicos , Microbiota , Metano/análise , Anaerobiose , Lagos , Água/análise , Sulfatos/análise
4.
Antonie Van Leeuwenhoek ; 115(10): 1229-1244, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35947314

RESUMO

Archaea belonging to the phylum Bathyarchaeota are the predominant archaeal species in cold, anoxic marine sediments and additionally occur in a variety of habitats, both natural and man-made. Metagenomic and single-cell sequencing studies suggest that Bathyarchaeota may have a significant impact on the emissions of greenhouse gases into the atmosphere, either through direct production of methane or through the degradation of complex organic matter that can subsequently be converted into methane. This is especially relevant in permafrost regions where climate change leads to thawing of permafrost, making high amounts of stored carbon bioavailable. Here we present the analysis of nineteen draft genomes recovered from a sediment core metagenome of the Polar Fox Lagoon, a thermokarst lake located on the Bykovsky Peninsula in Siberia, Russia, which is connected to the brackish Tiksi Bay. We show that the Bathyarchaeota in this lake are predominantly peptide degraders, producing reduced ferredoxin from the fermentation of peptides, while degradation pathways for plant-derived polymers were found to be incomplete. Several genomes encoded the potential for acetogenesis through the Wood-Ljungdahl pathway, but methanogenesis was determined to be unlikely due to the lack of genes encoding the key enzyme in methanogenesis, methyl-CoM reductase. Many genomes lacked a clear pathway for recycling reduced ferredoxin. Hydrogen metabolism was also hardly found: one type 4e [NiFe] hydrogenase was annotated in a single MAG and no [FeFe] hydrogenases were detected. Little evidence was found for syntrophy through formate or direct interspecies electron transfer, leaving a significant gap in our understanding of the metabolism of these organisms.


Assuntos
Gases de Efeito Estufa , Hidrogenase , Archaea/genética , Archaea/metabolismo , Carbono/metabolismo , Fermentação , Ferredoxinas/metabolismo , Formiatos/metabolismo , Gases de Efeito Estufa/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Peptídeos/metabolismo , Polímeros/metabolismo , Sibéria
5.
Front Microbiol ; 12: 761259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777314

RESUMO

Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes.

6.
Mol Ecol ; 30(20): 5094-5104, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387003

RESUMO

Temperature is an important factor governing microbe-mediated carbon feedback from permafrost soils. The link between taxonomic and functional microbial responses to temperature change remains elusive due to the lack of studies assessing both aspects of microbial ecology. Our previous study reported microbial metabolic and trophic shifts in response to short-term temperature increases in Arctic peat soil, and linked these shifts to higher CH4 and CO2 production rates (Proceedings of the National Academy of Sciences of the United States of America, 112, E2507-E2516). Here, we studied the taxonomic composition and functional potential of samples from the same experiment. We see that along a high-resolution temperature gradient (1-30°C), microbial communities change discretely, but not continuously or stochastically, in response to rising temperatures. The taxonomic variability may thus in part reflect the varied temperature responses of individual taxa and the competition between these taxa for resources. These taxonomic responses contrast the stable functional potential (metagenomic-based) across all temperatures or the previously observed metabolic or trophic shifts at key temperatures. Furthermore, with rising temperatures we observed a progressive decrease in species diversity (Shannon Index) and increased dispersion of greenhouse gas (GHG) production rates. We conclude that the taxonomic variation is decoupled from both the functional potential of the community and the previously observed temperature-dependent changes in microbial function. However, the reduced diversity at higher temperatures might help explain the higher variability in GHG production at higher temperatures.


Assuntos
Microbiota , Solo , Regiões Árticas , Dióxido de Carbono/análise , Metano , Microbiota/genética , Microbiologia do Solo , Temperatura
7.
Microorganisms ; 9(8)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34442857

RESUMO

Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.

8.
Sci Rep ; 11(1): 13135, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162928

RESUMO

Compared to the 1970s, the edge of the Ecology Glacier on King George Island, maritime Antarctica, is positioned more than 500 m inwards, exposing a large area of new terrain to soil-forming processes and periglacial climate for more than 40 years. To gain information on the state of soil formation and its interplay with microbial activity, three hyperskeletic Cryosols (vegetation cover of 0-80%) deglaciated after 1979 in the foreland of the Ecology Glacier and a Cambic Cryosol (vegetation cover of 100%) distal to the lateral moraine deglaciated before 1956 were investigated by combining soil chemical and microbiological methods. In the upper part of all soils, a decrease in soil pH was observed, but only the Cambic Cryosol showed a clear direction of pedogenic and weathering processes, such as initial silicate weathering indicated by a decreasing Chemical Index of Alteration with depth. Differences in the development of these initial soils could be related to different microbial community compositions and vegetation coverage, despite the short distance among them. We observed-decreasing with depth-the highest bacterial abundances and microbial diversity at vegetated sites. Multiple clusters of abundant amplicon sequence variants were found depending on the site-specific characteristics as well as a distinct shift in the microbial community structure towards more similar communities at soil depths > 10 cm. In the foreland of the Ecology Glacier, the main soil-forming processes on a decadal timescale are acidification and accumulation of soil organic carbon and nitrogen, accompanied by changes in microbial abundances, microbial community compositions, and plant coverage, whereas quantifiable silicate weathering and the formation of pedogenic oxides occur on a centennial to a millennial timescale after deglaciation.

9.
ISME J ; 15(11): 3258-3270, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34012103

RESUMO

Plasmids have the potential to transfer genetic traits within bacterial communities and thereby serve as a crucial tool for the rapid adaptation of bacteria in response to changing environmental conditions. Our knowledge of the environmental pool of plasmids (the metaplasmidome) and encoded functions is still limited due to a lack of sufficient extraction methods and tools for identifying and assembling plasmids from metagenomic datasets. Here, we present the first insights into the functional potential of the metaplasmidome of permafrost-affected active-layer soil-an environment with a relatively low biomass and seasonal freeze-thaw cycles that is strongly affected by global warming. The obtained results were compared with plasmid-derived sequences extracted from polar metagenomes. Metaplasmidomes from the Siberian active layer were enriched via cultivation, which resulted in a longer contig length as compared with plasmids that had been directly retrieved from the metagenomes of polar environments. The predicted hosts of plasmids belonged to Moraxellaceae, Pseudomonadaceae, Enterobacteriaceae, Pectobacteriaceae, Burkholderiaceae, and Firmicutes. Analysis of their genetic content revealed the presence of stress-response genes, including antibiotic and metal resistance determinants, as well as genes encoding protectants against the cold.


Assuntos
Pergelissolo , Solo , Bactérias/genética , Microbiologia do Solo , Tundra
10.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32031215

RESUMO

Methane production in thawing permafrost can be substantial, yet often evolves after long lag phases or is even lacking. A central question is to which extent the production of methane after permafrost thaw is determined by the initial methanogenic community. We quantified the production of methane relative to carbon dioxide (CO2) and enumerated methanogenic (mcrA) gene copies in long-term (2-7 years) anoxic incubations at 4 °C using interglacial and glacial permafrost samples of Holocene and Pleistocene, including Eemian, origin. Changes in archaeal community composition were determined by sequencing of the archaeal 16S rRNA gene. Long-term thaw stimulated methanogenesis where methanogens initially dominated the archaeal community. Deposits of interstadial and interglacial (Eemian) origin, formed under higher temperatures and precipitation, displayed the greatest response to thaw. At the end of the incubations, a substantial shift in methanogenic community composition and a relative increase in hydrogenotrophic methanogens had occurred except for Eemian deposits in which a high abundance of potential acetoclastic methanogens were present. This study shows that only anaerobic CO2 production but not methane production correlates significantly with carbon and nitrogen content and that the methanogenic response to permafrost thaw is mainly constrained by the paleoenvironmental conditions during soil formation.


Assuntos
Euryarchaeota , Pergelissolo , Archaea/genética , Euryarchaeota/genética , Metano , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
11.
FEMS Microbiol Ecol ; 93(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029047

RESUMO

The rare biosphere, the low abundant microbial populations, is suggested to be a conserved way of microbial life. Here we conducted a molecular survey of rare methanogenic archaea in the environment targeting the mcrA gene in order to test if general concepts associated with the structure of the rare bacterial biosphere also apply to single functional groups. Similar to what is known about rare bacterial communities, the contribution of rare methanogens to the alpha diversity is much larger than to Bray-Curtis measures. Moreover, a similar core group of methanogens harbored by the abundant and rare communities suggests similar sources and environmental controls of both groups. Among the communities of different levels of rarity, the conditionally rare methanogenic taxa largely account for the overall community dynamics of the rare biosphere and likely enter the dominant community under favorable environmental conditions. In addition, we observed a positive correlation between the alpha diversity and the production of methane when the rare taxa were taken into account. This supports the concept that increasing microbial biodiversity enhances ecological function. The composition and environmental associations of the rare methanogenic biosphere allow us to conclude that rarity is a conserved way also for single functional groups.


Assuntos
Bactérias/classificação , Biodiversidade , Euryarchaeota/classificação , Metano/biossíntese , Bactérias/genética , Enzimas de Restrição do DNA/genética , Euryarchaeota/genética , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
12.
Front Microbiol ; 8: 1339, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769904

RESUMO

Methanogenic archaea are important for the global greenhouse gas budget since they produce methane under anoxic conditions in numerous natural environments such as oceans, estuaries, soils, and lakes. Whether and how environmental change will propagate into methanogenic assemblages of natural environments remains largely unknown owing to a poor understanding of global distribution patterns and environmental drivers of this specific group of microorganisms. In this study, we performed a meta-analysis targeting the biogeographic patterns and environmental controls of methanogenic communities using 94 public mcrA gene datasets. We show a global pattern of methanogenic archaea that is more associated with habitat filtering than with geographical dispersal. We identify salinity as the control on methanogenic community composition at global scale whereas pH and temperature are the major controls in non-saline soils and lakes. The importance of salinity for structuring methanogenic community composition is also reflected in the biogeography of methanogenic lineages and the physiological properties of methanogenic isolates. Linking methanogenic alpha-diversity with reported values of methane emission identifies estuaries as the most diverse methanogenic habitats with, however, minor contribution to the global methane budget. With salinity, temperature and pH our study identifies environmental drivers of methanogenic community composition facing drastic changes in many natural environments at the moment. However, consequences of this for the production of methane remain elusive owing to a lack of studies that combine methane production rate with community analysis.

13.
Sci Rep ; 6: 37473, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886221

RESUMO

Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.


Assuntos
DNA Bacteriano/genética , Pergelissolo/microbiologia , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Biodegradação Ambiental , Contagem de Colônia Microbiana , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Hidrocarbonetos/metabolismo , Consórcios Microbianos/genética , Poluição por Petróleo/análise , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo
14.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230921

RESUMO

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.


Assuntos
Mudança Climática , Lagos/análise , Metano/metabolismo , Methylococcaceae/metabolismo , Oxigênio/análise , Rios/química , Regiões Árticas , Sequência de Bases , Carbono/metabolismo , DNA Bacteriano/genética , Ecossistema , Efeito Estufa , Lagos/microbiologia , Metano/análise , Methylococcaceae/genética , Oxirredução , Rios/microbiologia , Análise de Sequência de DNA , Sibéria , Solo , Microbiologia do Solo
15.
Arch Microbiol ; 198(7): 629-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27098810

RESUMO

The functional pmoA gene is frequently used to probe the diversity and phylogeny of methane-oxidizing bacteria (MOB) in various environments. Here, we compared the similarities between the pmoA gene and the corresponding 16S rRNA gene sequences of 77 described species covering gamma- and alphaproteobacterial methanotrophs (type I and type II MOB, respectively) as well as methanotrophs from the phylum Verrucomicrobia. We updated and established the weighted mean pmoA gene cutoff values on the nucleotide level at 86, 82, and 71 % corresponding to the 97, 95, and 90 % similarity of the 16S rRNA gene. Based on these cutoffs, the functional gene fragments can be entirely processed at the nucleotide level throughout software platforms such as Mothur or QIIME which provide a user-friendly and command-based alternative to amino acid-based pipelines. Type II methanotrophs are less divergent than type I both with regard to ribosomal and functional gene sequence similarity and GC content. We suggest that this agrees with the theory of different life strategies proposed for type I and type II MOB.


Assuntos
Metano/metabolismo , Methylococcaceae/genética , Oxigenases/genética , Verrucomicrobia/genética , Composição de Bases , Sequência de Bases , Methylococcaceae/classificação , Methylococcaceae/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Verrucomicrobia/classificação , Verrucomicrobia/metabolismo
16.
Front Microbiol ; 6: 356, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029170

RESUMO

The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs.

17.
J Microbiol Methods ; 103: 3-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24858450

RESUMO

The functional mcrA gene of methanogens can generate phylogeny as congruent as the 16S rRNA gene phylogeny. For the mcrA sequences amplified by mlas/mcrA-rev primers, we created a database for taxonomical classification and propose cut-off values for OTU clustering and further analysis of α- and ß-diversity with the MOTHUR software.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genes Arqueais , Sequenciamento de Nucleotídeos em Larga Escala , Methanomicrobiaceae/genética , Software , Biologia Computacional/métodos , Genômica , RNA Ribossômico 16S/genética , Valores de Referência
18.
PLoS One ; 9(5): e96552, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24794099

RESUMO

The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.


Assuntos
Pergelissolo/microbiologia , Petróleo/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , China , DNA Bacteriano/genética , Ecossistema , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Federação Russa , Microbiologia do Solo
19.
PLoS One ; 7(12): e52730, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300754

RESUMO

The China-Russia Crude Oil Pipeline (CRCOP) goes through 441 km permafrost soils in northeastern China. The bioremediation in case of oil spills is a major concern. So far, little is known about the indigenous bacteria inhabiting in the permafrost soils along the pipeline. A pilot 454 pyrosequencing analysis on the communities from four selected sites which possess high environment risk along the CRCOP is herein presented. The results reveal an immense bacterial diversity than previously anticipated. A total of 14448 OTUs with 84834 reads are identified, which could be assigned into 39 different phyla, and 223 families or 386 genera. Only five phyla sustain a mean OTU abundance more than 5% in all the samples, but they altogether account for 85.08% of total reads. Proteobacteria accounts for 41.65% of the total OTUs or 45% of the reads across all samples, and its proportion generally increases with soil depth, but OTUs numerically decline. Among Proteobacteria, the abundance of Beta-, Alpha-, Delta- and Gamma- subdivisions average to 38.7% (2331 OTUs), 37.5% (2257 OTUs), 10.35% (616 OTUs), and 6.21% (374 OTUs), respectively. Acidobacteria (esp. Acidobacteriaceae), Actinobacteria (esp. Intrasporangiaceae), Bacteroidetes (esp. Sphingobacteria and Flavobacteria) and Chloroflexi (esp. Anaerolineaceae) are also very common, accounting for 8.56% (1237 OTUs), 7.86% (1136 OTUs); 7.35% (1063 OTUs) and 8.27% (1195 OTUs) of total libraries, respectively. The ordination analysis indicates that bacteria communities in the upper active layer cluster together (similar), while bacterial consortia from the lower active layer and permafrost table scatter (less similar). The abundance of Rhodococcus (12 OTUs), Pseudomonas (71 OTUs) and Sphingomonas (87 OTUs) is even less (<0.01%). This effort to profile the background diversity may set the first stage for better evaluating the bacterial dynamics in response to accidental oil spills.


Assuntos
Proteobactérias/genética , Microbiologia do Solo , Acidobacteria/genética , Actinobacteria/genética , Bacteroidetes/genética , Biota , China , Chloroflexi/genética , Tipagem Molecular , Campos de Petróleo e Gás/microbiologia , Federação Russa , Análise de Sequência de DNA
20.
Ying Yong Sheng Tai Xue Bao ; 20(11): 2785-9, 2009 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-20136017

RESUMO

Ice-wedge is an indicator of paleoclimate change. The delta18 O concentration in different layers could reflect the change of paleotemperature during ice-wedge growth. In the late 1980s, inactive ice wedges were found in Yitulihe, Northeast China, which were the south-most ones so far and were important in climatic and environmental research. In this paper, the delta18 O concentration and microbial number in the inactive ice-wedges were analyzed by using stable isotope, fluorescence microscopy counting, and flow cytometer (FCM). During the ice-wedge growth in Yitulihe area, there were three short-term paleotemperature fluctuation, and three times of fluctuation in microbial amount in different ice-wedge layer. Correlation analysis indicated that there was a converging relationship between the temperature change and microbial amount in the ice-wedges. The lower the temperature when ice-wedge layer formed, the less the microbes survived in the layer.


Assuntos
Mudança Climática/estatística & dados numéricos , Temperatura Baixa , Camada de Gelo/microbiologia , China , Contagem de Colônia Microbiana , Isótopos de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA