Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2403544121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805289

RESUMO

Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-O•). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O• radicals. The specificity of CH3C(O)O• generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O• in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.

2.
Genomics ; 116(3): 110853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701988

RESUMO

Atg8 family proteins play crucial roles in autophagy to maintain cellular homeostasis. However, the physiological roles of Atg8 family proteins have not been systematically determined. In this study, we generated Atg8a and Atg8b (homologs of Atg8 in Drosophila melanogaster) knockout flies. We found that the loss of Atg8a affected autophagy and resulted in partial lethality, abnormal wings, decreased lifespan, and decreased climbing ability in flies. Furthermore, the loss of Atg8a resulted in reduced muscle integrity and the progressive degeneration of the neuron system. We also found that the phosphorylation at Ser88 of Atg8a is important for autophagy and neuronal integrity. The loss of Atg8b did not affect autophagy but induced male sterility in flies. Here, we take full advantage of the fly system to elucidate the physiological function of Atg8a and Atg8b in Drosophila.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Drosophila melanogaster/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Fosforilação , Longevidade , Neurônios/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
3.
Nat Commun ; 15(1): 1453, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365740

RESUMO

Meningeal lymphatic vessels (mLVs) have been shown to be involved in amyloid beta (Aß) clearance, which is considered as a potential therapeutic target for Alzheimer's disease (AD). In this study, based on the superficial spatial distribution of mLVs, a near-infrared light is employed to modulate lymphatic drainage, significantly improving cognition of both aged and AD (5xFAD and APP/PS1) mice, and alleviating AD-associated pathology by reducing Aß deposition, neuroinflammation and neuronal damage. Furthermore, transmission electron microscopy imaging and RNA sequencing data indicate amelioration of mitochondrial metabolism and cellular junction of meningeal lymphatic endothelial cells (mLECs) by light modulation. These studies collectively suggest that near-infrared light treatment can improve cognitive function by strengthening scavenging ability of mLVs through restoring mLEC function. In conclusion, lymphatic drainage potentiation by light promotes pathological remission and cognitive enhancement in aging and AD mouse models, which offers a potential amelioration strategy for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Células Endoteliais/metabolismo , Cognição , Envelhecimento , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/metabolismo
4.
Lab Chip ; 24(6): 1715-1726, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38328873

RESUMO

The liver and kidney are the major detoxifying organs in the human body and play an important role in pharmacokinetics. Drug-induced hepatotoxicity and nephrotoxicity can cause irreversible damage to the liver and kidney and are a major cause of drug failure in later stages. Both animal models and conventional cell culture have a number of limitations, such as animal ethics and gene mismatching and there is an urgent need to develop a new drug toxicity evaluation approach. In this paper, a 3D liver-kidney on a chip with a biomimicking circulating system (LKOCBCS) was constructed to obtain kidney and liver models in vitro for drug safety evaluation. LKOCBCS, which has a parallel circulating system mimicking biological circulation, consists of 3D biomimetic tissue of liver lobules similar to that of the human liver constructed by 3D bioprinting and renal proximal tubule barriers fabricated by ultrafast laser assisted etching. The proposed LKOCBCS facilitates the communication between the liver and the kidney, including the exchange of nutrients, compounds, and metabolites. The results revealed that the glucose concentration and cell metabolism stabilized after 7 days. A dynamically repeated low-dose administration of cyclosporine A (CsA) was fed to the system, and hepatotoxicity and nephrotoxicity were observed on day 3 according to the changes in toxicity markers. The high levels of drug induced biomarkers expressed in LKOCBCS indicate that this system is more sensitive than the monoculture liver chip and it is highly potential in replacing animal models for effective drug toxicity screening.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Humanos , Rim , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dispositivos Lab-On-A-Chip
5.
PNAS Nexus ; 3(2): pgae040, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38328784

RESUMO

Aromatic amines (AAs), ubiquitous in industrial applications, pose significant environmental hazards due to their resistance to conventional wastewater treatments. Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have been proposed as effective strategies for addressing persistent AA contaminants. While the organic radicals generated in these systems are believed to be selective and highly oxidative, acetate residue complicates the evaluation of AA removal efficiency. In this work, we explored transformation pathways of AAs in a representative Co(II)-catalyzed PAA system, revealing five side reactions (i.e. nitrosation, nitration, coupling, dimerization, and acetylation) that yield 17 predominantly stable and toxic by-products. The dominant reactive species was demonstrated as Co-OOC(O)CH3, which hardly facilitated ring-opening reactions. Our findings highlight the potential risks associated with PAA-based AOPs for AA degradation and provide insights into selecting suitable catalytic systems aimed at efficient and by-product-free degradation of pollutants containing aromatic -NH2.

6.
ACS Nano ; 18(2): 1582-1598, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170456

RESUMO

Heterogeneity of the tumor microenvironment (TME) is primarily responsible for ineffective tumor treatment and uncontrolled tumor progression. Pyroptosis-based immunogenic cell death (ICD) therapy is an ideal strategy to overcome TME heterogeneity and obtain a satisfactory antitumor effect. However, the efficiency of current pyroptosis therapeutics, which mainly depends on a single endogenous or exogenous stimulus, is limited by the intrinsic pathological features of malignant cells. Thus, it is necessary to develop a synergistic strategy with a high tumor specificity and modulability. Herein, a synergistic nanoplatform is constructed by combining a neutrophil camouflaging shell and a self-synergistic reactive oxygen species (ROS) supplier-loaded polymer. The covered neutrophil membranes endow the nanoplatform with stealthy properties and facilitate sufficient tumor accumulation. Under laser irradiation, the photosensitizer (indocyanine green) exogenously triggers ROS generation and converts the laser irradiation into heat to upregulate NAD(P)H:quinone oxidoreductase 1, which further catalyzes ß-Lapachone to self-produce sufficient endogenous ROS, resulting in amplified ICD outcomes. The results confirm that the continuously amplified ROS production not only eliminates the primary tumor but also concurrently enhances gasdermin E-mediated pyroptosis, initiates an ICD cascade, re-educates the heterogeneous TME, and promotes a systemic immune response to suppress distant tumors. Overall, this self-synergistic nanoplatform provides an efficient and durable method for redesigning the immune system for targeted tumor inhibition.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Morte Celular Imunogênica , Piroptose , Espécies Reativas de Oxigênio , Temperatura Alta , Linhagem Celular Tumoral , Microambiente Tumoral
7.
J Zhejiang Univ Sci B ; 24(9): 807-822, 2023.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37701957

RESUMO

BACKGROUND: The musk glands of adult male Chinese forest musk deer (Moschus berezovskii Flerov, 1929) (FMD), which are considered as special skin glands, secrete a mixture of sebum, lipids, and proteins into the musk pod. Together, these components form musk, which plays an important role in attracting females during the breeding season. However, the relationship between the musk glands and skin of Chinese FMD remains undiscovered. Here, the musk gland and skin of Chinese FMD were examined using histological analysis and RNA sequencing (RNA-seq), and the expression of key regulatory genes was evaluated to determine whether the musk gland is derived from the skin. METHODS: A comparative analysis of musk gland anatomy between juvenile and adult Chinese FMD was conducted. Then, based on the anatomical structure of the musk gland, skin tissues from the abdomen and back as well as musk gland tissues were obtained from three juvenile FMD. These tissues were used for RNA-seq, hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), western blot (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) experiments. RESULTS: Anatomical analysis showed that only adult male FMD had a complete glandular organ and musk pod, while juvenile FMD did not have any well-developed musk pods. Transcriptomic data revealed that 88.24% of genes were co-expressed in the skin and musk gland tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis found that the genes co-expressed in the abdomen skin, back skin, and musk gland were enriched in biological development, endocrine system, lipid metabolism, and other pathways. Gene Ontology (GO) enrichment analysis indicated that the genes expressed in these tissues were enriched in biological processes such as multicellular development and cell division. Moreover, the Metascape predictive analysis tool demonstrated that genes expressed in musk glands were skin tissue-specific. qRT-PCR and WB revealed that sex-determining region Y-box protein 9 (Sox9),Caveolin-1 (Cav-1), andandrogen receptor (AR) were expressed in all three tissues, although the expression levels differed among the tissues. According to the IHC results, Sox9 and AR were expressed in the nuclei of sebaceous gland, hair follicle, and musk gland cells, whereas Cav-1 was expressed in the cell membrane. CONCLUSIONS: The musk gland of Chinese FMD may be a derivative of skin tissue, and Sox9, Cav-1, and AR may play significant roles in musk gland development.

8.
Adv Healthc Mater ; 12(29): e2301641, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548137

RESUMO

Immunotherapy is considered to be an effective treatment for cancer and has drawn extensive interest. Nevertheless, the insufficient antigenicity and immunosuppressive tumor microenvironment often cause unsatisfactory therapeutic efficacy. Herein, a photo-activated reactive oxygen species (ROS) amplifying system (defined as "M-Cu-T") is developed to induce antitumor immune response by triggering a tumor-specific immunogenic pyroptosis. In M-Cu-T, M1 macrophage membrane-based vesicles are used for drug loading and tumor targeting, photosensitizers (meso-tetra(4-aminophenyl) porphyrin, TAPP) are used as a pyroptosis inducer, copper ions (Cu2+ ) can enhance ROS-induced pyroptosis by consuming antioxidant systems in cells. As expected, the prepared M-Cu-T targets enrichment into tumor cells and cascades the generation of ROS, which further induces pyroptosis through caspase 3-mediated gasdermin E (GSDME) cleavage under laser activation. The pyroptotic cancer cells accompanying secrete related pattern molecules, induce immunogenic cell death, and activate antitumor immunity for immunotherapy. An effective tumor ablation is observed in LLC and CT26 cancer mouse models. This study provides inspiration for boosting the immunogenicity and achieving satisfactory therapeutic effects in cancer therapy.


Assuntos
Neoplasias , Piroptose , Animais , Camundongos , Biomimética , Cobre , Espécies Reativas de Oxigênio , Imunoterapia , Neoplasias/tratamento farmacológico
9.
Nat Nanotechnol ; 18(12): 1401-1408, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653051

RESUMO

Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies.

10.
Proc Natl Acad Sci U S A ; 120(30): e2305706120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459516

RESUMO

Singlet oxygen (1O2) plays a pivotal role in numerous catalytic oxidation processes utilized in water purification and chemical synthesis. The spin-trapping method based on electron paramagnetic resonance (EPR) analysis is commonly employed for 1O2 detection. However, it is often limited to time-independent acquisition. Recent studies have raised questions about the reliability of the 1O2 trapper, 2,2,6,6-tetramethylpiperidine (TEMP), in various systems. In this study, we introduce a comprehensive, kinetic examination to monitor the spin-trapping process in EPR analysis. The EPR intensity of the trapping product was used as a quantitative measurement to evaluate the concentration of 1O2 in aqueous systems. This in situ kinetic study was successfully applied to a classical photocatalytic system with exceptional accuracy. Furthermore, we demonstrated the feasibility of our approach in more intricate 1O2-driven catalytic oxidation processes for water decontamination and elucidated the molecular mechanism of direct TEMP oxidation. This method can avoid the false-positive results associated with the conventional 2D 1O2 detection techniques, and provide insights into the reaction mechanisms in 1O2-dominated catalytic oxidation processes. This work underscores the necessity of kinetic studies for spin-trapping EPR analysis, presenting an avenue for a comprehensive exploration of the mechanisms governing catalytic oxidation processes.

11.
PeerJ ; 11: e15368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37220523

RESUMO

To explore the influence of different types of anthropogenic activity on the rivers, we investigate the major ion composition, sources and risk assessment of the karst stream (Youyu stream and Jinzhong stream), which are heavily influenced by mining activities and urban sewage, respectively. The chemical compositions of the Youyu stream water, which is heavily influenced by mining activities, are dominated by Ca2+ and SO42-. However, the chemical compositions of the Jinzhong stream water, which is heavily influenced by urban sewage, are dominated by Ca2+ and HCO3-. The Ca2+, Mg2+ and HCO3- in Jinzhong stream are mainly derived from rock weathering, while the Youyu stream is affected by acid mine drainage, and sulfuric acid is involved in the weathering process. Ion sources analysis indicates that the Na+, K+, NO3-, and Cl- in the Jinzhong stream mainly derive from urban sewage discharge; but NO3- and Cl- of the Youyu stream mainly derive from agricultural activities, and Na+, K+ are mainly from natural sources. The element ratios analysis indicates the ratio of SO42-/Mg2+ in Youyu stream (4.61) polluted by coal mine is much higher than that in Jinzhong stream (1.29), and the ratio of (Na++K++Cl-)/Mg2+ in Jinzhong stream (1.81) polluted by urban sewage is higher than Youyu stream (0.64). Moreover, the ratios of NO3-/Na+, NO3-/K+, and NO3-/Cl- in the agriculturally polluted Youyu stream were higher than those in the Jinzhong stream. We can identify the impact of human activities on streams by ion ratios (SO42-/Mg2+, (Na++K++Cl-)/Mg2+, NO3-/Na+, NO3-/K+, and NO3-/Cl-). The health risk assessment shows the HQT and HQN for children and adults are higher in Jinzhong stream than in Youyu stream and the total HQ value (HQT) of children was higher than one at J1 in the Jinzhong stream, which shows that children in Jinzhong stream basin are threatened by non-carcinogenic pollutants. Each HQ value of F- and NO3- for children was higher than 0.1 in the tributaries into Aha Lake, indicating that the children may also be potentially endangered.


Assuntos
Efeitos Antropogênicos , Rios , Adulto , Criança , Humanos , Esgotos , Medição de Risco , China , Água
12.
Small ; 19(7): e2205692, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36494182

RESUMO

Chemodynamic therapy (CDT) utilizes Fenton or Fenton-like reactions to convert hydrogen peroxide (H2 O2 ) into cytotoxic hydroxyl radicals (•OH) and draws extensive interest in tumor therapy. Nevertheless, high concentrations of glutathione (GSH) and insufficient endogenous H2 O2 often cause unsatisfactory therapeutic efficacy. Herein, a GSH-depleting and H2 O2 self-providing carrier-free nanomedicine that can efficiently load indocyanine green (ICG), ß-lapachone (LAP), and copper ion (Cu2+ ) (ICG-Cu2+ -LAP, LICN) to mediate synergetic photothermal and chemotherapy in enhanced chemodynamic therapy is designed. The results show that  LICNs successfully enter tumors owing to the enhanced permeability and retention effect. Through the reductive intracellular environment, Cu2+ in LICN can react with intracellular GSH, alleviate the antioxidant capacity of tumor tissues, and trigger the release of drugs. When LICN is subjected to near-infrared (NIR) irradiation, enhanced photothermal effect and upregulated expression of NAD(P)H quinone oxidoreductase-1 (NQO1) are observed. Meanwhile, the released LAP not only supports chemotherapy but also catalyzes NQO1 and produces sufficient endogenous H2 O2 , thereby increasing the efficiency of Cu+ -based Fenton-like reaction. Notably, GSH depletion and H2 O2 self-sufficiency generate sufficient •OH and kill tumor cells with high specificity. Overall, the study provides an innovative strategy to self-regulate GSH and H2 O2 levels for effective anticancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Cobre , Radical Hidroxila , Nanomedicina , Peróxido de Hidrogênio/farmacologia , Microambiente Tumoral , Glutationa/metabolismo
13.
Small ; 18(48): e2204689, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180398

RESUMO

Poor selectivity and unintended toxicity to normal organs are major challenges in calcium ion (Ca2+ ) overload tumor therapy. To address this issue, a cell membrane-anchoring nano-photosensitizer (CMA-nPS) is constructed for inducing tumor-specific Ca2+ overload through multistage endogenous Ca2+ homeostasis disruption under light guidance, i.e., the extracellular Ca2+ influx caused by cell membrane damage, followed by the intracellular Ca2+ imbalance caused by mitochondrial dysfunction. CMA-nPS is decorated by two types of functionalized cell membranes, the azide-modified macrophage cell membrane is used to conjugate the dibenzocyclooctyne-decorated photosensitizer, and the vesicular stomatitis virus glycoprotein (VSV-G)-modified NIH3T3 cell membrane is used to guide the anchoring of photosensitizer to the lung cancer cell membrane. The in vitro study shows that CMA-nPS mainly anchors on the cell membrane, and further causes membrane damage, mitochondrial dysfunction, as well as intracellular Ca2+ overload upon light irradiation. Synergistically enhanced antitumor efficiency is observed in vitro and in vivo. This study provides a new synergistic strategy for Ca2+ -overload-based cancer therapy, as well as a strategy for anchoring photosensitizer on the cell membrane, offering broad application prospects for the treatment of lung cancer.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Camundongos , Animais , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cálcio/metabolismo , Células NIH 3T3 , Membrana Celular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
14.
J Clin Lab Anal ; 36(7): e24386, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35582743

RESUMO

BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is a severe complication among patients receiving intravascular contrast media. The purpose of this study was to investigate the preventive effects of pretreatment of atorvastatin at intensive doses on CI-AKI after computed tomography (CT) perfusion. METHODS: The levels of serum creatinine (SCR), blood urea nitrogen (BUN), Cystatin C (CysC), estimated glomerular filtration rate (eGFR), high-sensitivity C-reactive protein (hs-CRP), and interleukin-6 (IL-6) in patients were compared between the observation group receiving 40 mg/kg atorvastatin and the control group receiving 20 mg/kg atorvastatin before and 72 h after CT examination. In addition, the incidence of CI-AKI was recorded. RESULTS: Compared with the control group, the incidence of renal injury in the observation group was significantly reduced, from 8% to 2% (χ2  = 6.62, p = 0.010). In addition, there was no notable difference in the levels of Scr, BUN, CysC, hs-CRP, and IL-6 before CT examination between two groups (p > 0.05). The levels of SCR, BUN, CysC, hs-CRP, and IL-6 were increased, while the levels of eGFR were decreased in the control group at 72 h after CT examination (p < 0.05). At 72 h after CT enhancement, the levels of BUN, CysC, and hs-CRP were prominently increased in the observation group (p < 0.05), while SCR, eGFR, and IL-6 did not change (p > 0.05). Compared with the control group, the levels of SCR, BUN, CysC, eGFR, hs-CRP, and IL-6 in the observation group were significantly decreased at 72 h after CT examination (p < 0.05). CONCLUSION: Intensive dose of atorvastatin pretreatment can prevent CI-AKI undergoing CT perfusion through lowering inflammation as well as renal function indexes SCR, CysC, BUN, and eGFR.


Assuntos
Injúria Renal Aguda , Atorvastatina , Meios de Contraste , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Atorvastatina/uso terapêutico , Biomarcadores , Proteína C-Reativa , Meios de Contraste/efeitos adversos , Creatinina , Taxa de Filtração Glomerular , Humanos , Interleucina-6 , Perfusão , Tomografia Computadorizada por Raios X
15.
Int J Mol Med ; 50(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35593304

RESUMO

MicroRNAs (miRNAs/miRs) are a type of endogenous non­coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post­transcriptional level by targeting the 3'­untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus­cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non­canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.


Assuntos
MicroRNAs , Neoplasias , Regiões 3' não Traduzidas , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia
16.
J Therm Biol ; 104: 103161, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180956

RESUMO

Spotted sea bass (Lateolabrax maculatus) is a popular and important commercial fish throughout the world, but it is unknown whether introducing domesticated fish to locations that experience cold weather might alter physiological performance. In this study, we evaluated the behavior, fatty acid content, histological analysis of liver and gills, liver enzymatic activity in carbohydrate and lipid metabolism, and gene expression in liver related to carbohydrate and lipid metabolism of spotted sea bass acclimatized at 22 °C (control), 16 °C, 10 °C, 8 °C, and 4 °C for 24 h, and 8 °C for 4 days. When L. maculatus was exposed to acute cold stress for 24 h, the gill showed curling, lamellar disorganization, lamellar epithelium hyperplasia, and formed aneurysms inside of the secondary lamellae. Long term stress over four days resulted in severe lamellar epithelium hyperplasia and curling. Continued extreme cold exposure (4 °C) in L. maculatus caused liver HK, PK levels and LDH activities to achieve a peak value at 0 h, and decreased over time. These indicated that glucose metabolism might play critical roles in the initial time of stress. Results of carbohydrate and lipid metabolism showed that lipids appear to play roles in prolonged cold stress. The constitutive transcriptional levels of six genes related to glucose (G6Pase) and lipid metabolism (PPAR-α, PPAR-γ) and mTOR signal pathway (eif4ebp1, eif4ebp2, mlst8) genes increased significantly in most groups during cold stress.


Assuntos
Bass/fisiologia , Temperatura Baixa , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Aclimatação , Animais , Brânquias/metabolismo , Fígado/metabolismo
17.
Bioengineered ; 13(1): 418-430, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937497

RESUMO

This study aims to probe the biological functions of long non-coding RNA small nucleolar RNA host gene 18 (SNHG18) on glioma cells and its underlying mechanism. In this study, SNHG18 expression in glioma tissues was quantified employing GEPIA database; quantitative real-time PCR was adopted to examine the expressions of SNHG18, microRNA-338-5p (miR-338-5p) and forkhead box D1 (FOXD1) mRNA in glioma tissues and cell lines; cell proliferation, migration and invasion were detected utilizing cell counting kit-8, EdU and Transwell assays; Western blot was utilized to quantify the protein expressions of E-cadherin, N-cadherin, Vimentin and FOXD1; dual-luciferase reporter gene and RNA immunoprecipitation experiments were utilized to validate the targeting relationships between SNHG18 and miR-338-5p, as well as miR-338-5p and FOXD1 mRNA 3'UTR; dual-luciferase reporter gene and chromatin immunoprecipitation assays were utilized to verify the binding of E2F transcription factor 1 (E2F1) to the SNHG18 promoter region. It was revealed that, SNHG18 expression in glioma was up-regulated and associated with unfavorable prognosis of the patients; knockdown of SNHG18 repressed the malignant biological behaviors of glioma cells, enhanced E-cadherin expression and repressed N-cadherin and Vimentin expressions. MiR-338-5p was a target of SNHG18, and SNHG18 promoted the expression of FOXD1 by decoying miR-338-5p. Additionally, E2F1 could bind to the promoter of SNHG18 to elevate its expression. In conclusion, SNHG18 accelerates glioma progression via regulating the miR-338-5p/FOXD1 axis.


Assuntos
Neoplasias Encefálicas/patologia , Fator de Transcrição E2F1/genética , Fatores de Transcrição Forkhead/genética , Glioma/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Masculino , Gradação de Tumores , Prognóstico , Regiões Promotoras Genéticas , Regulação para Cima
18.
J Cell Mol Med ; 25(2): 880-891, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289319

RESUMO

A key early sign of degenerative disc disease (DDD) is the loss of nucleus pulposus (NP) cells (NPCs). Accordingly, NPC transplantation is a treatment strategy for intervertebral disc (IVD) degeneration. However, in advanced DDD, due to structural damage of the IVD and scaffold mechanical properties, the transplanted cells are less viable and secrete less extracellular matrix, and thus, are unable to efficiently promote NP regeneration. In this study, we evaluated the encapsulation of NPCs in a photosensitive hydrogel made of collagen hydrolysate gelatin and methacrylate (GelMA) to improve NP regeneration. By adjusting the concentration of GelMA, we prepared hydrogels with different mechanical properties. After examining the mechanical properties, cell compatibility and tissue engineering indices of the GelMA-based hydrogels, we determined the optimal hydrogel concentration of the NPC-encapsulating GelMA hydrogel for NP regeneration as 5%. NPCs effectively combined with GelMA and proliferated. As the concentration of the GelMA hydrogel increased, the survival, proliferation and matrix deposition of the encapsulated NPCs gradually decreased, which is the opposite of NPCs grown on the surface of the hydrogel. The controllability of the GelMA hydrogels suggests that these NPC-encapsulating hydrogels are promising candidates to aid in NP tissue engineering and repairing endogenous NPCs.


Assuntos
Gelatina/química , Hidrogéis/química , Núcleo Pulposo/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Degeneração do Disco Intervertebral/metabolismo
19.
Zhonghua Xin Xue Guan Bing Za Zhi ; 39(9): 797-801, 2011 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-22321225

RESUMO

OBJECTIVE: To elucidate the roles of monocyte chemotactic factors (MCP-1, RANTES and Fractalkine) on the vulnerability of atherosclerotic plaques in patients with stable (SAP) and unstable angina pectoris (UAP). METHODS: Patients with SAP (n = 50) and UAP (n = 50) underwent coronary angiography (CAG) and intravenous ultrasound (IVUS) were included in the study. Monocyte chemotaxis was assayed by the transwell chamber. Concentrations of hs-CRP, MCP-1, RANTES and Fractalkine were measured by Enzyme-linked-immunosorbent assay (ELISA). mRNA expression of MCP-1, RANTES and Fractalkine in the monocytes was detected by RT-PCR. RESULTS: IVUS evidenced soft lipid plaques in 48% UAP patients and in 16% SAP patients (P < 0.05). SAP patients had mainly fibrous and mixed plaques. Plaque burden and vascular remodeling index were significantly higher in UAP patients than in SAP patients (P < 0.01). The averaged number of migrated monocytes in the UAP patients were higher than that in patients with SAP (P < 0.01). Concentration of hs-CRP, MCP-1, RANTES and Fractalkine were significantly higher in UAP patients than those of SAP patients (P < 0.05 or P < 0.01). mRNA expression of MCP-1, RANTES and Fractalkine in patients with UAP was significantly higher than those of SAP patients (P < 0.05). CONCLUSION: Upregulated monocyte chemotactic factors (MCP-1, RANTES and Fractalkine) might promote coronary plaque vulnerability in UAP patients.


Assuntos
Angina Pectoris/metabolismo , Angina Instável/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CX3CL1/metabolismo , Placa Aterosclerótica/patologia , Angina Pectoris/patologia , Angina Instável/patologia , Angiografia Coronária , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética
20.
Zhonghua Wai Ke Za Zhi ; 45(4): 220-2, 2007 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-17502011

RESUMO

OBJECTIVE: To discuss the avail of balloon and stent-assisted Guglielmi detachable coil (GDC) placement in treatment of wide-necked cerebral aneurysm. METHODS: Eighty-seven patients with 92 wide-necked aneurysms undergone endovascular procedures using the balloon and stent-assisted remodeling technique. Respectively, appropriate Neuroform stents delivered with a 5 mm landing zone on either side of the aneurysm neck, the microcatheter entered through the interstice, aneurysms were embolized at one or several times. Two catheters were used in balloon-remodeling technique, balloon were inflated across the neck of the aneurysms after the microcatheter entering the aneurysms, then the GDC were used to embolize the aneurysms. RESULTS: Thirty-one aneurysms were completely occluded, 3 subtotally (> 90%) and 1 incompletely (70% - 90%) occluded using stent-assisted technique, all carry arteries were unblocked, 3 patients with mild neurological dysfunction and no mortality. Fifty aneurysms were completely occluded and 4 incompletely occluded using balloon-assisted technique, 1 patients with mild neurological dysfunction and no mortality. Two aneurysms were completely occluded and 1 incompletely occluded using stent-assisted and balloon-assisted technique. The mean period of follow-up was 5.8 months. Rates of recanalization were 16.7% for stent-remodeling group and 12.5% for balloon-remodeling group. CONCLUSIONS: The stent and balloon-assisted remodeling technique are safe and effective in treating wide-necked aneurysms. Balloon-remodeling technique has more security comparing with stents.


Assuntos
Angioplastia com Balão , Embolização Terapêutica/métodos , Aneurisma Intracraniano/terapia , Stents , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA