Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400783, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607655

RESUMO

Halide perovskites have shown great potential in X-ray detection due to outstanding optoelectronic properties. However, finding a cost-effective and environmentally sustainable method for handling end-of-life devices has remained challenging. Here, a "One-Click Restart" eco-friendly recycling strategy is introduced for end-of-life perovskite X-ray detectors. This method, utilizing water, allows for the recapture and reuse of both perovskite and conductor materials. The process is straightforward and environmentally friendly, eliminating the need for further chemical treatment, purification, additional additives or catalysts, and complex equipment. A sustainable device cycle is developed by reconstructing flexible perovskite membranes for wearable electronics from recycled materials. Large-scale, flexible membranes made from metal-free perovskite DABCO-N2H5-I3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) achieve remarkably impressive average sensitivity of 6204 ± 268 µC Gyair -1 cm-2 and a low detection limit of 102.3 nGyair s-1, which makes highly effective for X-ray imaging. The sensitivity of recycled flexible devices not only matches that of single-crystal devices made with fresh materials but also ranks as the highest among all metal-free perovskite X-ray detectors. "One-Click Restart" applies to scalable flexible devices derived from aged single-crystal counterparts, offering significant cost, time, and energy savings compared to their single-crystal equivalents. Such advantages significantly boost future market competitiveness.

2.
Adv Mater ; : e2311562, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507724

RESUMO

A robust perovskite-buried interface is pivotal for achieving high-performance flexible indoor photovoltaics as it significantly influences charge transport and extraction efficiency. Herein, a molecular bridge strategy is introduced utilizing sodium 2-cyanoacetate (SZC) additive at the perovskite-buried interface to simultaneously achieve in situ passivation of interfacial defects and bottom-up crystallization modulation, resulting in high-performance flexible indoor photovoltaic applications. Supported by both theoretical calculations and experimental evidences, it illustrates how SZCs serve as molecular bridges, establishing robust bonds between SnO2 transport layer and perovskite, mitigating oxygen vacancy defects and under-coordinated Pb defects at interface during flexible fabrication. This, in turn, enhances interfacial energy level alignment and facilitates efficient carrier transport. Moreover, this in situ investigation of perovskite crystallization dynamics reveals bottom-up crystallization modulation, extending perovskite growth at the buried interface and influencing subsequent surface recrystallization. This results in larger crystalline grains and improved lattice strain of the perovskite during flexible fabrication. Finally, the optimized flexible solar cells achieve an impressive efficiency exceeding 41% at 1000 lux, with a fill factor as high as 84.32%. The concept of the molecular bridge represents a significant advancement in enhancing the performance of perovskite-based flexible indoor photovoltaics for the upcoming era of Internet of Things (IoT).

3.
Angew Chem Int Ed Engl ; 63(17): e202400205, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436587

RESUMO

The perovskite/silicon tandem solar cell (TSC) has attracted tremendous attention due to its potential to breakthrough the theoretical efficiency set for single-junction solar cells. However, the perovskite solar cell (PSC) designed as its top component cell suffers from severe photo-induced halide segregation owing to its mixed-halide strategy for achieving desirable wide-bandgap (1.68 eV). Developing pure-iodide wide-bandgap perovskites is a promising route to fabricate photostable perovskite/silicon TSCs. Here, we report efficient and photostable pure-iodide wide-bandgap PSCs made from an anti-solvent-free (ASF) technique. The ASF process is achieved by mixing two precursor solutions, both of which are capable of depositing corresponding perovskite films without involving anti-solvent. The mixed solution finally forms Cs0.3DMA0.2MA0.5PbI3 perovskite film with a bandgap of 1.68 eV. Furthermore, methylammonium chloride additive is applied to enhance the crystallinity and reduce the trap density of perovskite films. As a result, the pure-iodide wide-bandgap PSC delivers efficiency as high as 21.30 % with excellent photostability, the highest for this type of solar cells. The ASF method significantly improves the device reproducibility as compared with devices made from other anti-solvent methods. Our findings provide a novel recipe to prepare efficient and photostable wide-bandgap PSCs.

4.
Adv Mater ; : e2312014, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38380583

RESUMO

Perovskite photovoltaics have emerged as the most promising candidates for next-generation light-to-electricity technology. However, their practical application still suffers from energy loss induced by intrinsic defects within the perovskite lattice. Here, a refined defect passivation in perovskite films is designed, which shows a multi-interaction mechanism between the perovskite and passivator. Interestingly, a shift of molecular bonding is observed upon cooling down the film, leading to a stronger passivation of iodine/formamidine vacancies. Such mechanism on device under low-light and low-temperature conditions is further leveraged and a record efficiency over 45% with durable ambient stability (T90 > 4000 h) is obtained. The pioneer application of perovskite solar cells in above dual extreme conditions in this work reveals the key principles of designing functional groups for the passivators, and also demonstrates the capability of perovskites for diverse terrestrial energy conversion applications in demanding environments such as polar regions and outer space.

5.
Adv Mater ; 35(44): e2304809, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669571

RESUMO

The efficiency of metal halide perovskite solar cells (PSCs) has skyrocketed; however, defects created by aging precursor solutions and during crystallization pose a significant barrier to the reproducibility and efficiency of solar cells. In this work, fluoro-N,N,N″,N″-tetramethylformamidinium hexafluorophosphate (F-(CH3 )4 CN2 PF6 , abbreviated as TFFH) is introduced to stabilize precursor solution and improve crystallization dynamics simultaneously for high-performance formamidinium lead iodide (FAPbI3 )-based perovskite indoor photovoltaics. The TFFH stabilizes the precursor solution by inhibiting oxidation of I- and reducing newly generated I0 to I- , and passivates undercoordinated Pb2+ by interacting with the Pb─I framework. Time-resolved optical diagnostics show prolonged perovskite crystallization dynamics and in situ defect passivation due to the presence of strong FA+ ···TFFH···Pb─I interaction. Simultaneous regulation of precursor solution and crystallization dynamics guarantee larger perovskite grain sizes, better crystal orientation, fewer defects and more efficient charge extraction in PSCs. The optimized PSCs achieve improved reproducibility and better stability and reach an efficiency of 42.43% at illumination of 1002 lux, which is the highest efficiency among all indoor photovoltaics. It is anticipated that the concurrent stabilization of solutions and regulation of crystallization dynamics will emerge as a prevalent approach for enhancing the reproducibility and efficiency of perovskite.

6.
Angew Chem Int Ed Engl ; 62(41): e202309398, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624069

RESUMO

Photovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near-space vehicles and polar region applications. Herein, we demonstrate efficient low-temperature flexible perovskite solar cells by improving the interfacial contact between electron-transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO2 ) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl4 ). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO2 layer, regulates band alignment at the perovskite/SnO2 interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high-performance solar cells under one-sun illumination (AM 1.5G) with efficiencies up to 23.7 % at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low-temperature environments such as near-space and polar regions.

7.
Adv Mater ; 35(42): e2305314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37652150

RESUMO

Understanding and controlling crystallization is crucial for high-quality perovskite films and efficient solar cells. Herein, the issue of defects in formamidinium lead iodide (FAPbI3 ) formation is addressed, focusing on the role of intermediates. A comprehensive picture of structural and carrier evolution during crystallization is demonstrated using in situ grazing-incidence wide-angle X-ray scattering, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Three crystallization stages are identified: precursors to the δ-FAPbI3 intermediate, then to α-FAPbI3 , where defects spontaneously emerge. A hydrogen-sulfate-based ionic liquid additive is found to enable the phase-conversion pathway of precursors → solvated intermediates → α-FAPbI3 , during which the spontaneous generation of δ-FAPbI3 can be effectively circumvented. This additive extends the initial growth kinetics and facilitates solvent-FA+ ion exchange, which results in the self-elimination of defects during crystallization. Therefore, the improved crystallization dynamics lead to larger grain sizes and fewer defects within thin films. Ultimately, the improved perovskite crystallization dynamics enable high-performance solar cells, achieving impressive efficiencies of 25.14% at 300 K and 26.12% at 240 K. This breakthrough might open up a new era of application for the emerging perovskite photovoltaic technology to low-temperature environments such as near-space and polar regions.

8.
Adv Mater ; 35(51): e2303384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572021

RESUMO

Upscalable printing of high-performance and stable perovskite solar cells (PSCs) is highly desired for commercialization. However, the efficiencies of printed PSCs lag behind those of their lab-scale spin-coated counterparts owing to the lack of systematic understanding and control over perovskite crystallization dynamics. Here, the controlled crystallization dynamics achieved using an additive 1-butylpyridine tetrafluoroborate (BPyBF4 ) for high-quality ambient printed α-formamidinium lead triiodide (FAPbI3 ) perovskite films are reported. Using in situ grazing-incidence wide-angle X-ray scattering and optical diagnostics, the spontaneous formation of α-FAPbI3 from precursors during printing without the involvement of  Î´-FAPbI3 is demonstrated. The addition of BPyBF4 delays the crystallization onset of α-FAPbI3 , enhances the conversion from sol-gel to perovskite, and reduces stacking defects during printing. Therefore, the altered crystallization results in fewer voids, larger grains, and less trap-induced recombination loss within printed films. The printed PSCs yield high power conversion efficiencies of 23.50% and 21.60% for a 0.09 cm-2 area device and a 5 cm × 5 cm-area module, respectively. Improved device stability is further demonstrated, i.e., approximately 94% of the initial efficiency is retained for over 2400 h under ambient conditions without encapsulation. This study provides an effective crystallization control method for the ambient printing manufacture of large-area high-performance PSCs.

9.
Nat Commun ; 14(1): 839, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792606

RESUMO

Even though the perovskite solar cell has been so popular for its skyrocketing power conversion efficiency, its further development is still roadblocked by its overall performance, in particular long-term stability, large-area fabrication and stable module efficiency. In essence, the soft component and ionic-electronic nature of metal halide perovskites usually chaperonage large number of anion vacancy defects that act as recombination centers to decrease both the photovoltaic efficiency and operational stability. Herein, we report a one-stone-for-two-birds strategy in which both anion-fixation and associated undercoordinated-Pb passivation are in situ achieved during crystallization by using a single amidino-based ligand, namely 3-amidinopyridine, for metal-halide perovskite to overcome above challenges. The resultant devices attain a power conversion efficiency as high as 25.3% (certified at 24.8%) with substantially improved stability. Moreover, the device without encapsulation retained 92% of its initial efficiency after 5000 h exposure in ambient and the device with encapsulation retained 95% of its initial efficiency after >500 h working at the maximum power point under continuous light irradiation in ambient. It is expected this one-stone-for-two-birds strategy will benefit large-area fabrication that desires for simplicity.

10.
Adv Mater ; 35(5): e2206451, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427296

RESUMO

Manipulating the formation process of the 2D/3D perovskite heterostructure, including its nucleation/growth dynamics and phase transition pathway, plays a critical role in controlling the charge transport between 2D and 3D crystals, and consequently, the scalable fabrication of efficient and stable perovskite solar cells. Herein, the structural evolution and phase transition pathways of the ligand-dependent 2D perovskite atop the 3D surface are revealed using time-resolved X-ray scattering. The results show that the ligand size and shape have a critical influence on the final 2D structure. In particular, ligands with smaller sizes and more reactive sites tend to form the n = 1 phase. Increasing the ligand size and decreasing the reactive sites promote the transformation from 3D to n = 3 and n < 3 phases. These findings are useful for the rational design of the phase distribution in 2D perovskites to balance the charge transport and stability of the perovskite films. Finally, solar cells based on ambient-printed CsPbI3 with n-butylammonium iodide treatment achieve an improved efficiency of 20.33%, which is the highest reported value for printed inorganic perovskite solar cells.

11.
ACS Appl Mater Interfaces ; 14(47): 52838-52848, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383432

RESUMO

Metal oxides are commonly employed as electron transport layers (ETLs) for n-i-p perovskite solar cells (PSCs), but the presence of surface traps and their mismatched energy alignment with perovskites limits the corresponding device performance. Therefore, the interfacial modification of ETLs by functional molecules becomes an important strategy for tailoring the interfacial properties and facilitating an efficient charge extraction and transport in PSCs. However, an in-depth understanding of the influences of their molecular structures on the surface chemistry and electronic properties of ETLs is rarely discussed. Herein, three carboxylic acid-based molecules with different chemical structures were employed to modify the SnO2 ETL and their effects on the performance of PSCs were systematically investigated. We found that the alkyl-chain length and carboxyl number in molecular structures can dramatically alter their binding strength to SnO2, providing a good strategy to fine-tune their film quality, electron mobility, and energy offset at the cathode interface. Benefiting from the optimal coordination ability of citric acid (CA) to SnO2, the corresponding PSCs show better charge transport properties and suppressed nonradiative recombination, leading to a champion efficiency of 23.1% with much improved environmental stability, highlighting the potential of rational design of molecular modifiers for high-performance ETLs applied in PSCs.

12.
Angew Chem Int Ed Engl ; 61(41): e202209320, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973969

RESUMO

X-ray detectors have broad applications in medicine and industry. Although flexible lead-free perovskite films are competitive because of their lightweight and low toxicity, they are less efficient due to low charge transport. Herein, we report low-toxicity, flexible X-ray detectors based on p-type doped MA3 Bi2 I9 (MA=methylammonium) perovskite-filled membranes (PFMs). Strong coordination between dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) and MA3 Bi2 I9 and the establishment of charge-transfer complex (CPX) improved the conductivity by four times. The flexible X-ray detector achieved a high sensitivity of 2065 µC Gyair -1 cm-2 and an ultra-low detection limit of 2.71 nGyair s-1 , which is among the highest values in all environmentally friendly flexible X-ray detectors. Importantly, the PFMs retained excellent charge transport under mechanical stress. All of those make flexible MA3 Bi2 I9 membranes more competitive as next-generation X-ray detection.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35831209

RESUMO

The combination of organic ligands and inorganic Pb-I frameworks in layered perovskites has bestowed upon them high structural tunability and stability, while their microscopic degradation mechanism remains unclear. Here, we found the key role of ligands in intrinsic structural stability and the consequent morphological evolution in layered perovskites during long-term ambient aging based on (GA)(MA)nPbnI3n+1 (GA = guanidinium, = 4) and (BDA)(MA)n-1PbnI3n+1 (BDA = 1,4-butanediammonium, < n > = 4) perovskites. The BDA-based perovskites have a low intrinsic stability due to high crystal formation energy (ΔH), which are prone to hydration during ambient aging. We overserved changed crystal orientation from perpendicular to parallel, a delayed charge populating time from <1 ps to >50 ps, an inhibited carrier transfer kinetics between quantum wells, an increase of 0.9 µs of charge carrier transport time and a decrease of 1.2 µs of charge carrier lifetime in the BDA-based film during ambient aging, which accounts for a large power-conversion efficiency (PCE) loss (14.2% vs 11.2%). By contrast, the GA ligand increases the intrinsic structural stability of perovskites, which not only yields an initial PCE as high as 20.0% but also helps retain excellent optoelectronic properties during aging. Therefore, only a slight PCE loss (20.0% vs 19.1%) was observed. Our work reveals the key role of organic-inorganic interaction affecting the intrinsic structural stability and optoelectronic properties, and provides a theoretical basis for the future design of stable and efficient optoelectronic devices.

14.
Adv Sci (Weinh) ; 8(13): e2001433, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34032005

RESUMO

New structural type of 2D AA'n -1 Mn X3 n +1 type halide perovskites stabilized by symmetric diammonium cations has attracted research attention recently due to the short interlayer distance and better charge-transport for high-performance solar cells (PSCs). However, the distribution control of quantum wells (QWs) and its influence on optoelectronic properties are largely underexplored. Here effective phase-alignment is reported through dynamical control of film formation to improve charge transfer between quantum wells (QWs) for 2D perovskite (BDA)(MA)n -1 Pbn I3 n +1 (BDA = 1,4-butanediamine, 〈n〉 = 4) film. The in situ optical spectra reveal a significantly prolonged crystallization window during the perovskite deposition via additive strategy. It is found that finer thickness gradient by n values in the direction orthogonal to the substrate leads to more efficient charge transport between QWs and suppressed charge recombination in the additive-treated film. As a result, a power conversion efficiency of 14.4% is achieved, which is not only 21% higher than the control one without additive treatment, but also one of the high efficiencies of the low-n (n ≤ 4) AA'n -1 Mn X3 n +1 PSCs. Furthermore, the bare device retains 92% of its initial PCE without any encapsulation after ambient exposure for 1200 h.

15.
Research (Wash D C) ; 2021: 9671892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681813

RESUMO

Eco-friendly printing is important for mass manufacturing of thin-film photovoltaic (PV) devices to preserve human safety and the environment and to reduce energy consumption and capital expense. However, it is challenging for perovskite PVs due to the lack of eco-friendly solvents for ambient fast printing. In this study, we demonstrate for the first time an eco-friendly printing concept for high-performance perovskite solar cells. Both the perovskite and charge transport layers were fabricated from eco-friendly solvents via scalable fast blade coating under ambient conditions. The perovskite dynamic crystallization during blade coating investigated using in situ grazing incidence wide-angle X-ray scattering (GIWAXS) reveals a long sol-gel window prior to phase transformation and a strong interaction between the precursors and the eco-friendly solvents. The insights enable the achievement of high quality coatings for both the perovskite and charge transport layers by controlling film formation during scalable coating. The excellent optoelectronic properties of these coatings translate to a power conversion efficiency of 18.26% for eco-friendly printed solar cells, which is on par with the conventional devices fabricated via spin coating from toxic solvents under inert atmosphere. The eco-friendly printing paradigm presented in this work paves the way for future green and high-throughput fabrication on an industrial scale for perovskite PVs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA