Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 175193, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094643

RESUMO

Cadmium (Cd) and arsenic (As), two toxic elements to humans, are ubiquitously coexisting contaminant found in paddy fields. The accumulation of Cd and As in rice, a major food source for many people around the world, can pose a serious threat to food safety and human health. Therefore, it is crucial to be aware of these contaminants and take adequate measures to reduce the accumulation of these two elements in rice. Developing an effective method to simultaneously reduce the accumulation of Cd) and As in rice is challenging. In this study, a pot experiment was conducted to investigate the synergistic effects of selenium (Se), iron (Fe) and phosphorus (P) on the uptake, transport and accumulation of cadmium and arsenic in rice by analyzing the physical and chemical properties of the soil, the elemental concentrations and their interrelationships in the rice tissues, and the composition and morphology of the iron plaque (IP). The results showed that the combined treatments of Se, Fe and P had positive effects on reducing Cd and As accumulation in rice, reducing Cd concentrations in brown rice by 3.86-51.88 % and As concentrations by 25.37-40.81 %. The possible mechanisms for the reduction of As and Cd concentrations in rice grains were: (i) Combined application of Fe, P and Se can effectively reduce the soil available Cd and As concentration. (ii) Combined application significantly improved the formation of IP at the tillering stage and increased the crystalline iron oxides in IP, promoting the deposition of SiO2 in rice roots, thereby effectively inhibiting the uptake of Cd and As by rice roots. (iii) Interplay and interaction between elements facilitated by transporter proteins could contribute to the synergistic mitigation of Cd and As by Se, Fe and P. This study provides a valuable new approach for effective control of Cd and As concentration of rice grown in co-contaminated soil.


Assuntos
Arsênio , Cádmio , Ferro , Oryza , Fósforo , Selênio , Poluentes do Solo , Cádmio/metabolismo , Arsênio/análise , Poluentes do Solo/análise , Fósforo/análise , Solo/química
2.
Environ Sci Pollut Res Int ; 31(34): 47408-47419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997602

RESUMO

Here, Fe- and Mn-modified biochar (BC-Fe-Mn) was applied to simultaneously stabilize As and Cd in the contaminated soil. The removal efficiencies for NaHCO3-extractable As and DTPA-extractable Cd by BC-Fe-Mn were 60.8% and 49.6%, respectively. The speciation analyses showed that the transformation to low-crystallinity Fe-bound (F3) As, Fe-Mn oxide-bound (OX) of Cd, and residual As and Cd was primarily attributed to stabilizing the two metal(loid)s. Moreover, the correlation analyses showed that the increase of As in F3 fraction was significantly and positively associated with the increase of OX fraction Mn (r = 0.64). Similarly, OX fraction Cd was increased notably with increasing OX fraction Fe (r = 0.91) and OX fraction Mn (r = 0.76). In addition, a novel dialysis experiment was performed to separate the reacted BC-Fe-Mn from the soil for intensively investigating the stabilization mechanisms for As and Cd by BC-Fe-Mn. The characteristic crystalline compounds of (Fe0.67Mn0.33)OOH and Fe2O3 on the surface of BC-Fe-Mn were revealed by SEM-EDS and XRD. And FTIR analyses showed that α-FeOOH, R-COOFe/Mn+, and O-H on BC-Fe-Mn potentially served as the reaction sites for As and Cd. A crystalline compound of MnAsO4 was found in the soil treated by BC-Fe-Mn in the dialysis experiment. Thus, our results are beneficial to deeper understand the mechanisms of simultaneous stabilization of As and Cd by BC-Fe-Mn in soil and support the application of the materials on a large scale.


Assuntos
Arsênio , Cádmio , Carvão Vegetal , Recuperação e Remediação Ambiental , Manganês , Poluentes do Solo , Solo , Carvão Vegetal/química , Poluentes do Solo/química , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Solo/química , Manganês/química , Arsênio/química , Ferro/química
3.
J Hazard Mater ; 477: 135298, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053055

RESUMO

The biogeochemical cycle of biogenic manganese oxides (BioMnOx) is closely associated with the environmental behavior and fate of various pollutants. It is significantly interfered by many metals, such as Cu and Fe. However, the bacterial molecular responses are not clear. Here, the effects of Cu(II) and Fe(III) on oxidation of manganese by Pseudomonas putida MnB1 and the bacterial molecular response mechanisms have been studied. The bacterial oxidation of manganese were promoted by both Fe(III) and Cu(II) and the final manganese oxidation rate of the Cu(II) group exceeded 16 % that of the Fe(III) group. The results of transcriptome indicated that Cu(II) promoted manganese oxidation by up-regulating the expression levels of multicopper oxidase (MCO) and peroxidase(POD), and by stimulating electron transfer, while Fe(III) promoted this process by accelerating the electron transfer and nitrogen cycling, and activating POD. The protein-protein interaction (PPI) network indicated that the MCO genes (mnxG and mcoA) were directly linked to the copper homeostasis proteins (cusA, cusB, czcC and cusF). Cytochrome c was closely related to the genes related to nitrogen cycling (glnA, glnL, and putA) and electrons transfer (cycO, cycD, nuoA, nuoK, and nuoL), which also promoted manganese oxidation. This study provides a molecular level insight into the oxidation of Mn(II) by Pseudomonas putida MnB1 with Cu(II) and/or Fe(III) ions.


Assuntos
Cobre , Compostos de Manganês , Óxidos , Pseudomonas putida , Pseudomonas putida/metabolismo , Pseudomonas putida/genética , Cobre/metabolismo , Cobre/química , Compostos de Manganês/metabolismo , Compostos de Manganês/química , Óxidos/metabolismo , Óxidos/química , Oxirredução , Ferro/metabolismo , Ferro/química , Oxirredutases/metabolismo , Oxirredutases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Environ Pollut ; 355: 124148, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735457

RESUMO

Identifying the key influencing factors in soil available cadmium (Cd) is crucial for preventing the Cd accumulation in the food chain. However, current experimental methods and traditional prediction models for assessing available Cd are time-consuming and ineffective. In this study, machine learning (ML) models were developed to investigate the intricate interactions among soil properties, climate features, and available Cd, aiming to identify the key influencing factors. The optimal model was obtained through a combination of stratified sampling, Bayesian optimization, and 10-fold cross-validation. It was further explained through the utilization of permutation feature importance, 2D partial dependence plot, and 3D interaction plot. The findings revealed that pH, surface pressure, sensible heat net flux and organic matter content significantly influenced the Cd accumulation in the soil. By utilizing historical soil surveys and climate change data from China, this study predicted the spatial distribution trend of available Cd in the Chinese region, highlighting the primary areas with heightened Cd activity. These areas were primarily located in the eastern, southern, central, and northeastern China. This study introduces a novel methodology for comprehending the process of available Cd accumulation in soil. Furthermore, it provides recommendations and directions for the remediation and control of soil Cd pollution.


Assuntos
Cádmio , Monitoramento Ambiental , Aprendizado de Máquina , Poluentes do Solo , Solo , Cádmio/análise , Poluentes do Solo/análise , Solo/química , China , Monitoramento Ambiental/métodos , Clima , Teorema de Bayes , Mudança Climática
5.
J Hazard Mater ; 471: 134413, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669935

RESUMO

Heavy metal pollution at an abandoned smelter pose a significant risk to environmental health. However, remediation strategies are constrained by inadequate knowledge of the polymetallic distribution, speciation patterns, and transformation factors at these sites. This study investigates the influence of soil minerals, heavy metal occurrence forms, and environmental factors on heavy metal migration behaviors and speciation transformations. X-ray diffraction analysis revealed that the minerals associated with heavy metals are mainly hematite, franklinite, sphalerite, and galena. Sequential extraction results suggest that lead and zinc are primarily present in the organic-sulfide fractions (F4) and residual form (F5) in the soil, accounting for over 70% of the total heavy metal content. Zinc displayed greater instability in carbonate-bound (16%) and exchangeable (2%) forms. The migration and diffusion patterns of heavy metals in the subsurface environment were visualized through the simulation of labile state heavy metals, demonstrating high congruence with groundwater pollution distribution patterns. The key environmental factors influencing heavy metal stable states (F4 and F5) were assessed by integrating random forest models and redundancy analysis. Primary factors facilitating Pb transformation into stable states were available phosphorus, clay content, depth, and soil organic matter. For Zn, the principal drivers were Mn oxides, soil organic matter, clay content, and inorganic sulfur ions. These findings enhance understanding of the distribution and transformation of heavy metal speciation and can provide valuable insights into controlling heavy metal pollution at non-ferrous smelting sites.

6.
J Hazard Mater ; 471: 134408, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678716

RESUMO

The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.

7.
ACS Appl Mater Interfaces ; 16(10): 12534-12543, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38410050

RESUMO

The low O2 activation ability at low temperatures and SO2 poisoning are challenges for metal oxide catalysts in the application of Hg0 removal in flue gas. A novel high-entropy fluorite oxide (MgAlMnCo)CeO2 (Co-HEO) with the second phase of spinel is synthesized by the microwave hydrothermal method for the first time. A high efficiency of Hg0 removal (close to 100%) is achieved by Co-HEO catalytic oxidation at temperatures as low as 100 °C and in the atmosphere of 145 µg m-3 Hg0 at a high GHSV (gas hourly space velocity) of 95,000 h-1. According to O2-TPD and in situ FT-IR, this extremely superior catalytic oxidation performance at low temperatures originates from the activation ability of Co-HEO to transform O2 into superoxide and peroxide, which is promoted by point defects induced from the spinel/fluorite heterointerfaces. Meanwhile, SO2 resistance of Co-HEO for Hg0 removal is also improved up to 2000 ppm due to the high-entropy-stabilized structure, construction of heterointerfaces, and synergistic effect of the multicomponents for inhibiting the oxidation of SO2 to surface sulfate. The design strategy of the dual-phase high-entropy material launches a new route for metal oxides in the application of catalytic oxidation and SO2 resistance.

8.
Sci Total Environ ; 920: 170951, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367722

RESUMO

Rapid urbanization and industrialization have significantly contributed to the contamination of the environment through the discharge of wastewater containing various pollutants. The development of high-performance surface functional nanostructured adsorbents is of wide interest for researchers. Therefore, we explore the significant advancements in this field, focusing on the efficiency of nanostructured materials, as well as their nanocomposites, for wastewater treatment applications. The crucial role of surface modification in enhancing the affinity of these nanostructured adsorbents towards targeted pollutants, addressing a key bottleneck in the utilization of nanomaterials for wastewater treatment, was specifically emphasized. In addition to highlighting the advantages of surface engineering in enhancing the efficiency of nanostructured adsorbents, this review also provides a comprehensive overview of the limitations and challenges associated with surface-modified nanostructured adsorbents, including high cost, low stability, poor scalability, and potential nanotoxicity. Addressing these limitations is essential for realizing the commercial viability of these state-of-the-art materials for large-scale wastewater treatment applications. This review also thoroughly discusses the potential scalability and environmental safety aspects of surface-modified nanostructured adsorbents, offering insights into their future prospects for wastewater treatment. It is believed that this review will contribute significantly to the existing body of knowledge in the field and provide valuable information for researchers and practitioners working in the area of environmental remediation and nanomaterials.

9.
Environ Geochem Health ; 46(3): 86, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367055

RESUMO

Biochar adsorption of heavy metals has been a research hotspot, yet there has been limited reports on the effect of heavy metal interactions on adsorption efficiency in complex systems. In this study, the adsorbent was prepared by pyrolysis of rice straw loaded with manganese (BC-Mn). The interactions of Pb, Cd and As adsorption on BC-Mn were systematically studied. The results of the adsorption isotherms for the binary metal system revealed a competitive adsorption between Pb and Cd, resulting in decreased Pb (from 214.38 mg/g to 148.20 mg/g) and Cd (from 165.73 mg/g to 92.11 mg/g). A notable promotion occurred between As and Cd, showing an increase from 234.93 mg/g to 305.00 mg/g for As and 165.73 mg/g to 313.94 mg/g for Cd. In the ternary metal system, Pb inhibition did not counteract the promotion of Cd and As. Furthermore, the Langmuir isotherm effectively described BC-Mn's adsorption process in monometallic, binary, and ternary metal systems (R2 > 0.9294). Zeta and FTIR analyses revealed simultaneous competition between Pb and Cd for adsorption on BC-Mn's -OH sites. XPS analysis revealed that As adsorption by BC-Mn facilitated the conversion of MnO2 and MnO to MnOOH, resulting in increased hydroxyl radical production on BC-Mn's surface. Simultaneously, Cd combined with the adsorbed As to form ternary Cd-As-Mn complexes, which expedited the removal of Cd. These results help to provide theoretical support as well as technical support for the treatment of Pb-Cd-As contaminated wastewater.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Cádmio , Manganês , Compostos de Manganês , Adsorção , Chumbo , Óxidos , Carvão Vegetal
10.
BMC Public Health ; 24(1): 373, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317119

RESUMO

BACKGROUND: Endometriosis (EMs) is a chronic and progressive disease that, if diagnosed late, can lead to infertility and deep infiltrating endometriosis (DIE). Dysmenorrhea is the most prominent symptom of EMs. However, limited research exists on the specific correlation between dysmenorrhea patterns and EMs. Early prevention of EMs is essential to effectively manage the progression of the disease, and is best detected during adolescence. Our objective was to associate the development of EMs with dysmenorrhea patterns during adolescence and quantify the risk of adult EMs for adolescent girls, with the aim of supporting primary intervention strategy planning. METHODS: This case-control study examined predictors for adult EMs based on dysmenorrhea patterns in adolescents. We collected 1,287 cases of 641 EMs and 646 healthy females regarding their basic demographic information, adolescent menstrual characteristics, adolescent dysmenorrheal patterns, and adolescent lifestyles. Age-matching (1-to-1) was employed to control for the confounding effect of age between the groups. Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression models were utilized to identify predictors for adult EMs. The predictive value of the model was evaluated using the area under the receiver operating characteristic curve (AUC) and the C-index, while Hosmer-Lemeshow Test assessed the goodness of fit of the model. Data from one additional cohort in Shenzhen hospitalized with EMs were used to external validation were analyzed. RESULTS: Individuals who always experienced dysmenorrhea had a risk of adult endometriosis 18.874 (OR = 18.874; 95%CI = 10.309-34.555) times higher than those occasional dysmenorrhea, The risk of developing EMs was 5.257 times higher in those who experienced dysmenorrhea more than 12 months after menarche than in those who experienced dysmenorrhea less than 6 months after menarche (OR = 5.257, 95% CI = 3.343-8.266), AUC in the external validation cohort was 0.794(95%CI: 0.741-0.847). We further found that high-intensity physical activity and sun-sensitive skin of burning were influential factors in high-frequency dysmenorrhea. The AUC value for the internal evaluation of the model was 0.812 and the AUC value for the external validation was 0.794. CONCLUSION: Our findings revealed that the frequency of dysmenorrhea during adolescence contributed to the development of adult endometriosis. The frequency and onset of dysmenorrhea in adolescence were promising predictors for adult EMs. Both internal and external validation proved the model's good predictive ability. TRIAL REGISTRATION: http://www.chictr.org.cn/ , TRN: ChicTR2200060429, date of registration: 2022/06/01, retrospectively registered.


Assuntos
Endometriose , Adulto , Feminino , Adolescente , Humanos , Endometriose/complicações , Endometriose/epidemiologia , Endometriose/diagnóstico , Dismenorreia/epidemiologia , Dismenorreia/etiologia , Dismenorreia/diagnóstico , Estudos de Casos e Controles , Menstruação , Menarca
11.
J Environ Sci (China) ; 139: 23-33, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105051

RESUMO

Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.


Assuntos
Compostos Férricos , Lignina , Oxirredução , Compostos Férricos/química , Minerais/química , Solo , Compostos Ferrosos
12.
J Environ Sci (China) ; 139: 496-515, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105072

RESUMO

Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.


Assuntos
Manganês , Metais Pesados , Manganês/química , Adsorção , Metais Pesados/química , Óxidos/química , Compostos de Manganês/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA