Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400315, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488741

RESUMO

Currently, a major target in the development of Na-ion batteries is the concurrent attainment of high-rate capacity and long cycling stability. Herein, an advanced Na-ion battery with high-rate capability and long cycle stability based on Li/Ti co-doped P2-type Na0.67 Mn0.67 Ni0.33 O2 , a host material with high-voltage zero-phase transition behavior and fast Na+ migration/conductivity during dynamic de-embedding process, is constructed. Experimental results and theoretical calculations reveal that the two-element doping strategy promotes a mutually reinforcing effect, which greatly facilitates the transfer capability of Na+ . The cation Ti4+ doping is a dominant high voltage, significantly elevating the operation voltage to 4.4 V. Meanwhile, doping Li+ shows the function in charge transfer, improving the rate performance and prolonging cycling lifespan. Consequently, the designed P2-Na0.75 Mn0.54 Ni0.27 Li0.14 Ti0.05 O2 cathode material exhibits discharge capacities of 129, 104, and 85 mAh g- 1 under high voltage of 4.4 V at 1, 10, and 20 C, respectively. More importantly, the full-cell delivers a high initial capacity of 198 mAh g-1 at 0.1 C (17.3 mA g-1 ) and a capacity retention of 73% at 5 C (865 mA g-1 ) after 1000 cycles, which is seldom witnessed in previous reports, emphasizing their potential applications in advanced energy storage.

2.
Small ; : e2400045, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453678

RESUMO

Emerging photoelectrochemical (PEC) photodetectors (PDs) have notable advantages over conventional PDs and have attracted extensive attention. However, harsh liquid environments, such as those with high corrosivity and attenuation, substantially restrict their widespread application. Moreover, most PEC PDs are constructed by assembling numerous nanostructures on current collector substrates, which inevitably contain abundant interfaces and defects, thus greatly weakening the properties of PDs. To address these challenges, a high-performance pH-universal PEC ultraviolet (UV) PD based on a whole single-crystal integrated self-supporting 4H-SiC nanopore array photoelectrode is constructed, which is fabricated using a two-step anodic oxidation approach. The PD exhibits excellent photodetection behavior, with high responsivity (218.77 mA W-1 ), detectivity (6.64 × 1013  Jones), external quantum efficiency (72.47%), and rapid rise/decay times (17/48 ms) under 375 nm light illumination with a low intensity of 0.15 mW cm-2 and a bias voltage of 0.6 V, which is fall in the state-of-the-art of the wide-bandgap semiconductor-based PDs reported thus far. Furthermore, the SiC PEC PD exhibits excellent photoresponse and long-term operational stability in pH-universal liquid environments. The improved photodetection performance of the SiC PEC PD is primarily attributed to the synergistic effect of the nanopore array structure, integrated self-supporting configuration, and single-crystal structure of the whole photoelectrode.

3.
Small ; 20(12): e2307069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964340

RESUMO

Optimizing the active centers through reconstruction is recognized as the key to construct high-performance oxygen evolution reaction (OER) catalysts. Herein, a simple and rapid in situ leaching strategy to promote the self-reconstruction of NiFe-layered double hydroxides (LDHs) catalysts is reported. The trace Zn dopants are introduced in advance by a facile and one-step hydrothermal method, followed by leaching over the electrochemical activation process, which can remarkably reduce the formation potential of NiFeOOH active centers to enable the deeper self-reconstruction for the formation of abundant highly active centers. Moreover, the self-restructured NiFeOOH-VZn cannot only significantly lower the dehydrogenation energy barrier for the transformation from Ni(OH)2 to NiOOH, but also decrease the free energy barrier of rate determining step for the *OH converted to *O through a deprotonation process, thus significantly boosting the OER behaviors. As a proof of concept, the obtained NiFeOOH-VZn catalyst just requires a low overpotential of 240 mV at 10 mA cm-2, and delivers robust stability at 50 mA cm-2 over 120 h, which outperforms the benchmark of noble metal RuO2 and those of most non-noble metal catalysts ever reported.

4.
Small ; 20(16): e2308818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018307

RESUMO

For exploring advanced Zn-ion batteries (ZIBs) with long lifespan and high Coulombic efficiency (CE), the critically important point is to limit the undesired Zn dendrite and parasitic reactions. Among the coating for electrode is a promising strategy, relying on the trade-off between its thickness and stability to achieve the ultra-stable Zn anodes in ZIBs. Herein, a submicron-thick (≈0.4 µm) zincophilic CrN coatings are fabricated by a facile and industry-compatible magnetron sputtering approach. It is exhilarating that the ultrathin and dense CrN coatings with strong adsorption ability for Zn2+ exhibit an impressive lifespan up to 3700 h with ≈100% CE at 1 mA cm-2. Along with the experiments and theoretical calculations, it is verified that the introduced CrN coatings cannot only effectively suppress the dendrite growth and notorious parasitic reactions, but also allow the uniform Zn deposition due to the reduced nucleation energy. Moreover, the as-assembled Zn@CrN‖MnO2 full cell delivers a high specific capacity of 171.1 mAh g-1 after 1000 cycles at 1 A g-1, much better than that of Zn‖MnO2 analog (97.8 mAh g-1). This work provides a facile strategy for scalable fabrication of ultrathin zincophilic coating to push forward the practical applications of ZIBs.

5.
Inorg Chem ; 62(33): 13467-13475, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37545093

RESUMO

Currently, the intrinsic instability of organic-inorganic hybrid perovskite nanocrystals (PNCs) at high temperature and high humidity still stands as a big barrier to hinder their potential applications in optoelectronic devices. Herein, we report the controllable in-situ-grown PNCs in polyvinylidene fluoride (PVDF) polymer with profoundly enhanced hygrothermal stability. It is found that the introduced tetradecylphosphonic acid (TDPA) ligand enables significantly improved binding to the surface of PNCs via a strong covalently coordinated P-O-Pb bond, as evidenced by density functional theory calculations and X-ray photoelectron spectroscopy analyses. Accordingly, such enhanced binding could not only make efficient passivation of the surface defects of PNCs but also enable the remarkably suppressed desorption of the ligand from the PNCs under high-temperature environments. Consequently, the photoluminescence quantum yield (PL QY) of the as-fabricated MAPbBr3-PNCs@PVDF film exhibits almost no decay after exposure to air at 333 K over 1800 h. Once the temperatures are increased from 293 to 353 K, their PL intensity can be kept as 88.6% of the initial value, much higher than that without the TDPA ligand (i.e., 42.4%). Moreover, their PL QY can be maintained above 50% over 1560 h (65 days) under harsh working conditions of 333 K and 90% humidity. As a proof of concept, the as-assembled white light-emitting diodes display a large color gamut of 125% National Television System Committee standard, suggesting their promising applications in backlight devices.

6.
ACS Appl Mater Interfaces ; 15(36): 42697-42705, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650768

RESUMO

Metal halide perovskite solar cells (PSCs) have recently made significant progress with power conversion efficiencies (PCEs) boosted from 3.8% to a certified one over 26.1%, partially benefiting from the high-quality perovskite film enabled by the effective one-step spin-coating route. However, an extra antisolvent step with poor controllability and producibility is often involved in such a process, and some intrinsic defects are generated inevitably, especially in ambient atmospheric conditions, thus fundamentally limiting the commercialization of PSCs. Here, we introduce 1,1'dimethyl ferrocene into methylammonium lead halide precursor, which could not only recover the defects within perovskite film but also simplify the process without the extra antisolvent step. Accordingly, a dense and uniform perovskite film with large grains has been obtained under ambient conditions, which has much lower defect density, better stability against moisture penetration, and enhanced thermal tolerance than the control one, delivering a champion PCE of 16.92%. Current work sheds light on the simplified air-processed strategy for high-quality perovskite films, which might pave the way for exploring efficient and stable PSCs toward industrial applications.

7.
J Phys Chem Lett ; 14(32): 7331-7339, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37561067

RESUMO

Two-dimensional (2D) halide perovskites are promising candidates for the fabrication of stable and high-efficiency solar cells. However, the low power conversion efficiency (PCE) of cell devices using 2D perovskites is attributed to reduced charge transport caused by poor organic barrier conductivity. In this study, we propose the use of a high-polarized organic zwitterionic spacer, p-aminobenzoic acid (PABA), to construct novel quasi-2D perovskite structures with enhanced self-driven charge separation and transfer. The NH3+ and COO- groups in PABA generate an aligned electric field, promoting carrier separation and aggregation on the opposite edges of the inorganic layer. This enables efficient in-plane transportation along the inorganic layer. Additionally, PABA intercalated quasi-2D perovskite exhibits improved stability compared with counterparts with diamine cation spacers due to the strong interaction between -COO- and inorganic layers. Our findings suggest that high-polarized organic zwitterionic spacers, with NH3+ and COO- functionality, hold promise for stable and efficient quasi-2D perovskite solar cells.

8.
J Phys Chem Lett ; 14(29): 6592-6600, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37459115

RESUMO

Generally, the 2D CsPbI3 layer capping on 3D counterparts has been considered as an effective strategy for both enhancing photovoltaic efficiency and stability. However, the intrinsically poor out-of-plane charge transport through the 2D layer remarkably hinders the overall performance of solar devices. To overcome such a challenge, we report the rationally designed 3D-CsPbI3/2D-(PYn)PbI4 (n = 1-4) heterojunctions with desirable energy level matching. It is evidenced that the valence band (VB) edge reconfiguration would occur with the increase of n, accompanied by the VB maximum (VBM) of the 2D component moving down from the higher level above that of the 3D component to the underneath. Consequently, the as-constructed 3D/2D-(PYn)PbI4 (n = 1, 2) heterojunctions exhibit optimal energy level matching, with accelerated transport of holes from 3D to 2D component and limited backflow of electrons. These findings might provide some meaningful insights on the energy level matching in 3D/2D perovskite heterojunctions.

9.
ACS Appl Mater Interfaces ; 15(19): 23457-23469, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37148254

RESUMO

Currently, the photodetectors (PDs) assembled by vertically aligned nanostructured arrays have attracted intensive interest owing to their unique virtues of low light reflectivity and rapid charge transport. However, in terms of the inherent limitations caused by numerous interfaces often existed within the assembled arrays, the photogenerated carriers cannot be effectively separated, thus weakening the performance of target PDs. Aiming at resolving this critical point, a high-performance ultraviolet (UV) PD with a single-crystal integrated self-supporting 4H-SiC nanohole arrays is constructed, which are prepared via the anode oxidation approach. As a result, the PD delivers an excellent performance with a high switching ratio (∼250), remarkable detectivity (6 × 1010 Jones), fast response (0.5 s/0.88 s), and excellent stability under 375 nm light illumination with a bias voltage of 5 V. Moreover, it has a high responsivity (824 mA/W), superior to those of most reported ones based on 4H-SiC. The overall high performance of the PDs could be mainly attributed to the synergistic effect of the SiC nanohole arrays' geometry, a whole single-crystal integrated self-supporting film without interfaces, established reliable Schottky contact, and incorporated N dopants.

10.
Mater Horiz ; 10(7): 2691-2697, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144424

RESUMO

Surface passivation is one of the effective and widely-used strategies to enhance the stability of halide perovskites with reduced surface defects and suppressed hysteresis. Among all existing reports, the formation and adsorption energies are popularly used as the decisive descriptors for screening passivators. Here, we propose that the often-ignored local surface structure should be another critically important factor governing the stability of tin-based perovskites after surface passivation, but has no detrimental effect on the stability of lead-based perovskites. It is verified that poor surface structure stability and deformation of the chemical bonding framework of Sn-I caused by surface passivation are ascribed to the weakened Sn-I bond strength and facilitated formation of surface iodine vacancy (VI). Therefore, the surface structure stability represented by the formation energy of VI and Sn-I bond strength should be used to accurately screen preferred surface passivators of tin-based perovskites.

11.
Small ; 19(32): e2300683, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078841

RESUMO

The development of low-cost single-atom electrocatalysts for oxygen reduction reaction (ORR) is highly desired but remains a grand challenge. Superior to the conventional techniques, a microwave-assisted strategy is reported for rapid production of high-quality Fe/N/C single-atom catalysts (SACs) with profoundly enhanced reaction rate and remarkably reduced energy consumption. The as-synthesized catalysts exhibit an excellent ORR performance with a positive half-wave potential up to 0.90 V, a high turnover frequency of 0.76 s-1 , as well as a satisfied stability with a lost half-wave potential of just 27 mV over 9000 cycles (much better than that of Pt/C with 107 mV lost) and good methanol resistance. The open-circuit voltages of as-constructed aqueous and flexible all-solid-state Zn-air batteries (ZABs) are 1.56 and 1.52 V, respectively, higher than those of 20% Pt/C-based ones (i.e., 1.43 and 1.38 V, respectively). Impressively, they afford a peak power density of 235 mW cm-2 , which exceeds that of Pt/C (i.e., 186 mW cm-2 ), and is comparable to the best ones of Fe/N/C-based ZABs ever reported.

12.
Small ; 19(25): e2207755, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932932

RESUMO

The layered quasi-2D perovskites are recognized as one of the effective strategies to resolve the big problem of intrinsic phase instability of the perovskites. However, in such configurations, their performance is fundamentally limited due to the correspondingly weakened out-of-plane charge mobility. Herein, the π-conjugated p-phenylenediamine (PPDA) is introduced as organic ligand ions for rationally designing lead-free and tin-based 2D perovskites with the aid of theoretical computation. It is evidenced that both out-of-plane charge transport capacity and stability can be significantly enhanced within as-established quasi-2D Dion-Jacobson (DJ) (PPDA)Csn -1 Snn I3 n +1 perovskites. The obviously increased electrical conductivity and reduced carrier effective masses are attributed to the enhanced interlayer interactions, limited structural distortions of diamine cations, as well as improved orbital coupling between Sn2+ and I- ions of (PPDA)Csn -1 Snn I3 n +1 perovskites. Accordingly, by dimension engineering of the inorganic layer (n), the bandgap (Eg ) of quasi-2D perovskites can be linearly tailored toward the suitable Eg (1.387 eV) with optimal photoelectric conversion efficiency (PCE) of 18.52%, representing their great potential toward promising applications in advanced solar cells.

13.
J Colloid Interface Sci ; 629(Pt A): 455-466, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36088691

RESUMO

Currently, two-dimensional/two-dimensional (2D/2D) van der Waals heterojunctions, as novel and excellent candidates for photocatalysts, have attracted significant attention because of their fundamentally improved interfacial charge separation/transfer and massive reactive centers. Herein, novel 2D/2D Ta3N5-nanosheet/ReS2-nanosheet van der Waals heterojunction photocatalysts are rationally designed through a method combining template-assisted and solution-adsorption processes. The resultant heterojunctions exhibit enhanced interfacial charge transfer, boosted light absorption and significantly increased reaction sites for hydrogen evolution. Correspondingly, they deliver a high photocatalytic hydrogen production activity of 615 µmol g-1 h-1, which is ∼3 and ∼12 times greater than that of bare Ta3N5 nanosheets and ReS2 nanosheets, respectively, and superior to those in the most recent reports about photocatalytic water splitting on Ta3N5 material, implying their potential applications as advanced catalysts for hydrogen evolution.

14.
Small ; 18(40): e2202939, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36048009

RESUMO

Photocatalytic CO2 reduction by solar energy into carbonaceous feedstock chemicals is recognized as one of the effective ways to mitigate both the energy crisis and greenhouse effect, which fundamentally relies on the development of advanced photocatalysts. Here, the exploration of porous microrod photocatalysts based on novel NiCoO solid solutions derived from bimetallic metal-organic frameworks (MOFs) is reported. They exhibit overall enhanced photocatalytic performance with both high activity and remarkable selectivity for reducing CO2 into CO under visible-light irradiation, which are superior to most related photocatalysts reported. Accordingly, the Ni0.2 -Co0.8 -O microrod (MR-N0.2 C0.8 O) photocatalyst delivers high efficiency for photocatalytic CO2 reduction into CO at a rate up to ≈277 µmol g-1 h-1 , which is ≈35 times to that of its NiO counterpart. Furthermore, they display a high selectivity of ≈85.12%, which is not only better than that of synthesized Co3 O4 (61.25%) but also superior to that of reported Co3 O4 -based photocatalysts. It is confirmed that the Co and Ni species are responsible for CO2 CO conversion activity and selectivity, respectively. In addition, it is verified, by adjusting the Ni contents, that the band structure of NiCoO microrods can be tailored with favorable reduction band potentials, which thus enhance the selectivity toward CO2 photoreduction.

15.
Proc Natl Acad Sci U S A ; 119(23): e2122252119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658081

RESUMO

SignificanceThe present work might be significant for exploring advanced K-ion batteries with superb rate capability and cycle stability toward practical applications. The as-assembled K-ion half cell exhibits an excellent rate capability of 428 mA h g-1 at 100 mA g-1 and a high reversible specific capacity of 330 mA h g-1 with 120% specific capacity retention after 2,000 cycles at 2,000 mA g-1, which is the best among those based on carbon materials. The as-constructed full cell delivers 98% specific capacity retention over 750 cycles at 500 mA g-1, superior to most of those based on carbon materials that have been reported thus far.

16.
ACS Appl Mater Interfaces ; 14(8): 10277-10287, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166520

RESUMO

Fabrication of amorphous electrocatalysts without noble metals for cost-effective full water splitting is highly desired but remains a substantial challenge. In the present work, we report a facile strategy for exploring integrated bifunctional electrocatalysts based on amorphous cobalt/nickel sulfide nanoflake arrays self-supported on carbon cloth, by tailoring competitive coordination of metal ions between glucose and 2-aminoterephthalic acid. Ultrahigh dispersion of binary metal active sites with balanced atomic distribution enables the optimization of catalytic properties for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in an alkaline solution. The obtained catalyst exhibits remarkably enhanced OER and HER activities as compared with its oxide counterpart and analogues with different Co/Ni ratios. It requires overpotentials of 296 and 192 mV to deliver a current density of 10 mA cm-2 for the OER and HER, respectively; it retains 96.6 and 96.9% activity after 32 h of OER and 36 h of HER tests at 10 mA cm-2, respectively. As directly used an anode and a cathode in an alkaline electrolyzer, a low cell voltage of 1.60 V could endow a water splitting current of 10 mA cm-2, outperforming the benchmark RuO2 and Pt/C-based electrolyzer at 1.72 V@10 mA cm-2. The current synthetic strategy may provide more opportunities for the design and direct synthesis of amorphous catalysts for overall water splitting and beyond.

17.
Proc Natl Acad Sci U S A ; 118(35)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34429362

RESUMO

The popularly reported energy storage mechanisms of potassium-ion batteries (PIBs) are based on alloy-, de-intercalation-, and conversion-type processes, which inevitably lead to structural damage of the electrodes caused by intercalation/de-intercalation of K+ with a relatively large radius, which is accompanied by poor cycle stabilities. Here, we report the exploration of robust high-temperature PIBs enabled by a carboxyl functional group energy storage mechanism, which is based on an example of p-phthalic acid (PTA) with two carboxyl functional groups as the redox centers. In such a case, the intercalation/de-intercalation of K+ can be performed via surface reactions with relieved volume change, thus favoring excellent cycle stability for PIBs against high temperatures. As proof of concept, at the fixed working temperature of 62.5 °C, the initial discharge and charge specific capacities of the PTA electrode are ∼660 and 165 mA⋅h⋅g-1, respectively, at a current density of 100 mA⋅g-1, with 86% specific capacity retention after 160 cycles. Meanwhile, it delivers 81.5% specific capacity retention after 390 cycles under a high current density of 500 mA⋅g-1 The cycle stabilities achieved under both low and high current densities are the best among those of high-temperature PIBs reported previously.

18.
ACS Appl Mater Interfaces ; 13(35): 41619-41627, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34431652

RESUMO

Currently, a big challenge for the practical use of potassium-ion batteries (PIBs) is their intrinsically poor cycling stability, due to the relatively large radius of K+ and sluggish kinetics for intercalation/deintercalation. Here we report the scalable fabrication of N/S-codoped hollow carbon nanocubes (NSHCCs), which have the potential as an electrode for advanced PIBs with robust stability. Their discharge and charge specific capacities are ∼560 mA h g-1 and 310 mA h g-1 at a current density of 50 mA g-1, respectively. Meanwhile, they exhibit 100% specific capacity retention after 620 cycles over 9 months at a low current density of 50 mA g-1, which is state-of-the-art among carbon materials. Moreover, they demonstrate nearly no sacrifice in specific capacities with 99.9% retention after 3000 cycles over 4 months under a high current density of 1000 mA g-1, superior to most carbon analogues for potassium storage previously reported. The improved electrochemical performance of NSHCC can be mainly attributed to the unique hollow carbon nanocubes with incorporated N and S dopants, which can expand the carbon layer spacing, facilitate K+ adsorption, and relieve the volume change during the intercalation/deintercalation of K+ ions.

19.
Nanomicro Lett ; 13(1): 156, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34264418

RESUMO

Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.

20.
Small ; 17(36): e2102307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34270871

RESUMO

The development of efficient visible-light-driven photocatalysts is one of the critically important issues for solar hydrogen production. Herein, high-efficiency visible-light-driven In2 O3 /CdZnS hybrid photocatalysts are explored by a facile oil-bath method, in which ultrafine CdZnS nanoparticles are anchored on NH2 -MIL-68-derived fusiform In2 O3 mesoporous nanorods. It is disclosed that the as-prepared In2 O3 /CdZnS hybrid photocatalysts exhibit enhanced visible-light harvesting, improves charges transfer and separation as well as abundant active sites. Correspondingly, their visible-light-driven H2 production rate is significantly enhanced for more than 185 times to that of pristine In2 O3 nanorods, and superior to most of In2 O3 -based photocatalysts ever reported, representing their promising applications in advanced photocatalysts.


Assuntos
Nanopartículas , Nanotubos , Hidrogênio , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA