Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Daru ; 32(1): 177-187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246975

RESUMO

BACKGROUND: In previous studies, authors have completed the total synthesis of several phloroglucinol natural products and synthesized a series of their derivatives, which were tested with good biological activities. OBJECTIVES: To discover anti-MRSA lead compound and study their mechanism of action. METHODS: Phloroglucinol derivatives were tested to investigate their activities against several gram-positive strains including Methicillin-resistant Staphylococcus aureus (MRSA). The mechanism study was conducted by determining extracellular potassium ion concentration, intracellular NADPH oxidase content, SOD activity, ROS amount in MRSA and MRSA survival rate under A5 treatment. The in vitro cytotoxicity test of A5 was conducted. RESULTS: The activity of monocyclic compounds was stronger than that of bicyclic compounds, and compound A5 showed the best MIC value of 0.98 µg/mL and MBC value of 1.95 µg/mL, which were 4-8 times lower than that of vancomycin. The mechanism study of A5 showed that it achieved anti-MRSA effect through membrane damage, which is proved by increased concentration of extracellular potassium ion after A5 treatment. Another possible mechanism is the over ROS production induced cell death, which is suggested by observed alternation of several reactive oxygen species (ROS) related indicators including NADPH concentration, superoxide dismutase (SOD) activity, ROS content and bacterial survival rate after A5 treatment. The cytotoxicity results in vitro showed that A5 was basically non-toxic to cells. CONCLUSION: Acylphloroglucinol derivative A5 showed good anti-MRSA activity, possibly via membrane damage and ROS-mediated oxidative stress mechanism. It deserves further exploration to be a potential lead for the development of new anti-MRSA agent.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Floroglucinol , Espécies Reativas de Oxigênio , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Floroglucinol/farmacologia , Floroglucinol/química , Floroglucinol/análogos & derivados , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Humanos , Superóxido Dismutase/metabolismo
2.
Chem Biodivers ; 20(8): e202300942, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37485637

RESUMO

Glioma is the most common brain tumor and its treatment options are limited. Abietic acid and dehydroabietic acid are tricyclic diterpenoid oxygen compounds with strong lip solubility and anti-glioma activity. In this study, novel rosin diterpenoid derivatives were designed and synthesized using abietic acid and dehydrogenated abietic acid as lead compounds and their activities against T98G, U87MG, and U251 cells were evaluated by CCK-8 methods. The in vivo activity of compounds with stronger activity in vitro was preliminarily studied through the Zebrafish model. The results showed that the IC50 values of B6, B8, B10, and B12 were 11.47 to 210.6 µM, which were exhibited higher antiproliferative potency against T98G, U87MG, and U251. The scratch experiment showed that B12 inhibited the migration of T98G in a time-dependent and concentration-dependent manner. The results of in vivo activity further explained that B12 could inhibit the proliferation of the T98G. The pKa values of B6, B8, B10, and B12 were 7.17 to 7.35, which were within the ideal range of glioma drugs. The ADME predictions indicated that these derivatives could pass through the blood-brain barrier. In addition, molecular docking primarily explained interaction between compounds and protein. These results suggested that B12 should be a promising candidate that merits further attention in the development of anti-glioma drugs.


Assuntos
Antineoplásicos , Diterpenos , Glioma , Animais , Simulação de Acoplamento Molecular , Peixe-Zebra , Glioma/tratamento farmacológico , Glioma/metabolismo , Diterpenos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade
3.
Int Immunopharmacol ; 122: 110660, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478665

RESUMO

JAK kinase includes four family members: JAK1, JAK2, JAK3, and TYK2. It forms the JAK-STAT pathway with signal transmitters and activators of subscription (STAT). This pathway is one of the main mechanisms by which many cytokine receptors transduce intracellular signals, it is associated with the occurrence of various immune, inflammatory, and tumor diseases. JAK inhibitors block the signal transduction of the JAK-STAT pathway by targeting JAK kinase. Based on whether they target multiple subtypes of JAK kinase, JAK inhibitors are categorized into pan-JAK inhibitors and selective JAK inhibitors. Compared with pan JAK inhibitors, selective JAK inhibitors are associated with a specific member, thus more targeted in therapy, with improved efficacy and reduced side effects. Currently, a number of JAK inhibitors have been approval for disease treatment. This review summarized the current application status of JAK inhibitors that have been marketed, advances of JAK inhibitors currently in phase Ш clinical trials, and the structure-activity relationship of them, with an intention to provide references for the development of novel JAK inhibitors.


Assuntos
Inibidores de Janus Quinases , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
4.
Saudi Pharm J ; 31(1): 65-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685294

RESUMO

Chalcone, a common chemical scaffold of many naturally occurring compounds, has been widely used as an effective template for drug discovery due to its broad biological activities. In this study, a series of chalcone derivatives were designed and synthesized based on the hybridization of 1-(2,4,6-trimethoxyphenyl)butan-1-one with chalcone. Interestingly, most of the target compounds exhibited inhibitory effect of tumor cells in vitro. Especially, (E)-3-(5-bromopyridin-2-yl)-1-(2,4,6-trimethoxyphenyl)prop-2-en-1-one (B3) revealed over 10-fold potency than 5-fluorocrail against the Hela and MCF-7 cells with IC50 values of 3.204 and 3.849 µM respectively. Moreover, B3 displayed low toxicity on normal cells. Further experiments indicated that B3 effectively inhibited the proliferation and migration of tumor cells, and promoted their apoptosis. The calculation and prediction of ADME showed that the target compounds may have good pharmacokinetic properties and oral bioavailability. Reverse molecular docking suggested that the possible target of B3 is CDK1. Taken together, these results suggested that B3 appears to be a promising candidate that merits further attention in the development of anticancer drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA