Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 122912, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37348273

RESUMO

The interfacial and confined water have long been attractive objects due to their crucial roles in biological, geological processes, etc. In this paper, we investigate the hydrogen-bonded structures of water and their low temperature transitions in the subnano channels of AlPO4-11 for the first time on the basis of infrared spectroscopy. The number of the adsorbed water molecules is estimated to be 8.45 per channel in one unit cell by thermogravimetric analysis. It is found that the confined water molecules are involved in saturated and unsaturated coordination with different hydrogen bond strengths at ambient temperature. The former refers to ice-like four-coordinated water and the latter includes liquid-like structures, Al-coordinated and relatively free water molecules. Unique coordination between water molecules and framework Al sites is responsible for the ice-like structures in the channels above the ice melting point. The appearance of liquid-like structures is closely related to the strong channel confinement, which does not allow the formation of extensive tetrahedral hydrogen-bonded configuration. As temperature decreases, a structural transformation of confined water happens in the channels of AlPO4-11. Isolated small water oligomers and two new components with stronger hydrogen bonds, such as low-density amorphous ice-like structures and a kind of low-density liquid-like structures are preferred. Our results provide important insights into the structural organizations and thermal-dynamic behaviors of confined water in extreme narrow channels.

2.
Phys Chem Chem Phys ; 20(41): 26117-26125, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30306996

RESUMO

The mechanical stability of porous zeolitic materials has long been an important issue due to their advanced applications in many fields. Here, we choose to study the pressure induced structural modifications on the AlPO4-5 (AFI) framework. We find that the Raman characteristics of the confined iodine molecules in the AFI channels, with a low filling density, show discontinuities at around 3 and 10 GPa, which can be attributed to the implications of framework changes. Subsequent theoretical simulations on the AFI framework demonstrate that both a tilting mechanism along the c axis and a rotating mechanism in the ab plane of the tetrahedrons contribute to the structural deformation, and the AFI framework is collapsible at 4 and 10 GPa, which confirms those values found in the Raman studies. In this nanoconfinement system of I@AFI, the host and guest depend on and interact with each other mutually. No supporting effect on the AFI framework is found for the confined individual iodine molecules with such a low filling density, but they can be regarded as molecular probes to reflect the structural collapse of AFI. Thus, we provide a novel way to detect the structural deformation of porous materials under high pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA