Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20293, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434011

RESUMO

High-pressure multistage centrifugal pumps have been widely used in modern industry and required low vibration and noise. In this study, modal analysis of the rotor system of a seven-stage centrifugal pump was carried out numerically by introducing fluid force to ensure that the centrifugal pump would not resonate. A vibration test bench was established to investigate the characteristics with flow rates of 0.8Qd, 1.0Qd, and 1.2Qd, and the vibration data of ten measuring points were collected. The period of the vibration at the bearing was found to be around 20 ms and the period was related to the shaft frequency (SF) and the blade passing frequency (BPF). The vibration of the pump casing was mainly determined by the SF, two times the SF, and two times the BPF. Mechanical motion is the main factor causing pump vibration, and fluid unstable motion is also an important cause.

2.
Vaccines (Basel) ; 10(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35891239

RESUMO

Human cytomegalovirus (HCMV) is the leading viral cause of congenital disease and permanent birth defects worldwide. Although the development of an effective vaccine is a public health priority, no vaccines are approved. Among the major antigenic targets are glycoproteins in the virion envelope, including gB, which facilitates cellular entry, and the pentameric complex (gH/gL/pUL128-131), required for the infection of specialized cell types. In this study, sera from rabbits immunized with the recombinant pentameric complex were tested for their ability to neutralize infection of epithelial cells, fibroblasts, and primary placental cell types. Sera from rhesus macaques immunized with recombinant gB or gB plus pentameric complex were tested for HCMV neutralizing activity on both cultured cells and cell column cytotrophoblasts in first-trimester chorionic villus explants. Sera from rabbits immunized with the pentameric complex potently blocked infection by pathogenic viral strains in amniotic epithelial cells and cytotrophoblasts but were less effective in fibroblasts and trophoblast progenitor cells. Sera from rhesus macaques immunized with the pentameric complex and gB more strongly reduced infection in fibroblasts, epithelial cells, and chorionic villus explants than sera from immunization with gB alone. These results suggest that the pentameric complex and gB together elicit antibodies that could have potential as prophylactic vaccine antigens.

3.
J Infect Dis ; 226(4): 585-594, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35413121

RESUMO

The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing titers comparable to those elicited by RhCMV infection. Similarly, immunization with all 3 immunogens elicited pp65-specific cytotoxic T-cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and was detected in saliva, blood, and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Citomegalovirus , Humanos , Macaca mulatta , Proteínas do Envelope Viral
4.
J Virol ; 96(3): e0165321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34788083

RESUMO

Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by nonnatural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Here, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV-infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.


Assuntos
Infecções por Citomegalovirus/veterinária , Citomegalovirus/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biópsia , DNA Viral , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina G/imunologia , Imuno-Histoquímica , Macaca mulatta , Doenças dos Macacos/patologia , Doenças dos Macacos/transmissão , Fases de Leitura Aberta , Especificidade de Órgãos , Carga Viral , Viremia , Eliminação de Partículas Virais
5.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674318

RESUMO

Human cytomegalovirus (HCMV) causes congenital disease with long-term morbidity. HCMV glycoprotein B (gB) transitions irreversibly from a metastable prefusion to a stable postfusion conformation to fuse the viral envelope with a host cell membrane during entry. We stabilized prefusion gB on the virion with a fusion inhibitor and a chemical cross-linker, extracted and purified it, and then determined its structure to 3.6-Å resolution by electron cryomicroscopy. Our results revealed the structural rearrangements that mediate membrane fusion and details of the interactions among the fusion loops, the membrane-proximal region, transmembrane domain, and bound fusion inhibitor that stabilized gB in the prefusion state. The structure rationalizes known gB antigenic sites. By analogy to successful vaccine antigen engineering approaches for other viral pathogens, the high-resolution prefusion gB structure provides a basis to develop stabilized prefusion gB HCMV vaccine antigens.

6.
Nat Struct Mol Biol ; 19(9): 893-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22864288

RESUMO

The trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike is a molecular machine that mediates virus entry into host cells and is the sole target for virus-neutralizing antibodies. The mature Env spike results from cleavage of a trimeric glycoprotein precursor, gp160, into three gp120 and three gp41 subunits. Here, we describe an ~11-Å cryo-EM structure of the trimeric HIV-1 Env precursor in its unliganded state. The three gp120 and three gp41 subunits form a cage-like structure with an interior void surrounding the trimer axis. Interprotomer contacts are limited to the gp41 transmembrane region, the torus-like gp41 ectodomain and a trimer-association domain of gp120 composed of the V1, V2 and V3 variable regions. The cage-like architecture, which is unique among characterized viral envelope proteins, restricts antibody access, reflecting requirements imposed by HIV-1 persistence in the host.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Infecções por HIV/virologia , HIV-1/química , Linhagem Celular , Microscopia Crioeletrônica , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
J Virol ; 86(4): 2153-64, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156525

RESUMO

Broad and potent neutralizing antibody (BNAb) responses are rare in people infected by human immunodeficiency virus type 1 (HIV-1). Clearly defining the nature of BNAb epitopes on HIV-1 envelope glycoproteins (Envs) targeted in vivo is critical for future directions of anti-HIV-1 vaccine development. Conventional techniques are successful in defining neutralizing epitopes in a small number of individual subjects but fail in studying large groups of subjects. Two independent methods were employed to investigate the nature of NAb epitopes targeted in 9 subjects, identified by the NIAID Center for HIV/AIDS Vaccine Immunology (CHAVI) 001 and 008 clinical teams, known to make a strong BNAb response. Neutralizing activity from 8/9 subjects was enhanced by enriching high-mannose N-linked glycan (HM-glycan) of HIV-1 glycoproteins on neutralization target viruses and was sensitive to specific glycan deletion mutations of HIV-1 glycoproteins, indicating that HM-glycan-dependent epitopes are targeted by BNAb responses in these subjects. This discovery adds to accumulating evidence supporting the hypothesis that glycans are important targets on HIV-1 glycoproteins for BNAb responses in vivo, providing an important lead for future directions in developing NAb-based anti-HIV-1 vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Manose/imunologia , Polissacarídeos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Testes de Neutralização , Polissacarídeos/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
8.
J Virol ; 85(19): 9998-10009, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21795340

RESUMO

V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Epitopos/genética , Feminino , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Testes de Neutralização , Ligação Proteica , Ressonância de Plasmônio de Superfície
9.
J Virol ; 84(14): 7114-23, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20463081

RESUMO

Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC(50)) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV , HIV-1/imunologia , Sequência de Aminoácidos , Sítios de Ligação de Anticorpos , Linhagem Celular , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Dados de Sequência Molecular , Testes de Neutralização , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Vírion/imunologia
10.
Virology ; 396(2): 339-48, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19922969

RESUMO

Neutralizing antibody (nAb) response is sporadic and has limited potency and breadth during infection with human immunodeficiency virus type 1 (HIV-1). In rare cases, broad and potent nAbs are actually induced in vivo. Identifying specific epitopes targeted by such broad and potent nAb response is valuable in guiding the design of a prophylactic vaccine aimed to induce nAb. In this study, we have defined neutralizing epitope usage in 7 out of 17 subjects with broad and potent nAbs by using targeted mutagenesis in known neutralizing epitopes of HIV-1 glycoproteins and by using in vitro depletion of serum neutralizing activity by various recombinant HIV-1 glycoproteins. Consistent with recent reports, the CD4 binding site (CD4BS) is targeted by nAbs in vivo (4 of the 7 subjects with defined neutralizing epitopes). The new finding from this study is that epitopes in the gp120 outer domain are also targeted by nAbs in vivo (5 of the 7 subjects). The outer domain epitopes include glycan-dependent epitopes (2 subjects), conserved nonlinear epitope in the V3 region (2 subjects), and a CD4BS epitope composed mainly of the elements in the outer domain (1 subject). Importantly, we found indication for epitope poly-specificity, a dual usage of the V3 and CD4BS epitopes, in only one subject. This study provides a more complete profile of epitope usage for broad and potent nAb responses during HIV-1 infection.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Epitopos/imunologia , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Testes de Neutralização , Proteínas Recombinantes/imunologia
11.
J Virol ; 81(16): 8809-13, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17537847

RESUMO

Hypothetically, antibodies may neutralize enveloped viruses by diverse mechanisms, such as disruption of receptor binding, interference with conformational changes required for virus entry, steric hindrance, or virus aggregation. Here, we demonstrate that retroviral infection mediated by the avian sarcoma-leukosis virus (ASLV-A) envelope glycoproteins can be neutralized by an antibody directed against a functionally unimportant component of a chimeric receptor protein. Thus, the binding of an antibody in proximity to the retroviral envelope glycoprotein-receptor complex, without binding to the entry machinery itself, results in neutralization. This finding provides additional support for the hypothesis that steric hindrance is sufficient for antibody-mediated neutralization of retroviruses.


Assuntos
Anticorpos Antivirais/farmacologia , Vírus do Sarcoma Aviário/efeitos dos fármacos , Antagonistas dos Receptores CCR5 , Glicoproteínas/imunologia , Receptores Virais/antagonistas & inibidores , Proteínas do Envelope Viral/imunologia , Internalização do Vírus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/imunologia , Reações Antígeno-Anticorpo , Vírus do Sarcoma Aviário/imunologia , Células Cultivadas , Humanos , Ligantes , Receptores Virais/imunologia
12.
Nature ; 445(7129): 732-7, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17301785

RESUMO

The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.


Assuntos
Sequência Conservada , Epitopos/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/química , HIV-1/imunologia , Sítios de Ligação , Antígenos CD4/química , Antígenos CD4/metabolismo , Epitopos/imunologia , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Modelos Moleculares , Peso Molecular , Testes de Neutralização , Conformação Proteica
13.
J Virol ; 80(22): 11404-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16956933

RESUMO

Primary and laboratory-adapted variants of human immunodeficiency virus type 1 (HIV-1) exhibit a wide range of sensitivities to neutralization by antibodies directed against the viral envelope glycoproteins. An antibody directed against an artificial FLAG epitope inserted into the envelope glycoproteins of three HIV-1 isolates with vastly different neutralization sensitivities inhibited all three viruses equivalently. Thus, naturally occurring HIV-1 isolates that are neutralization resistant are not necessarily more impervious to the inhibitory consequences of bound antibody. Moreover, the binding affinity of the anti-FLAG antibody correlated with neutralizing potency, underscoring the dominant impact on neutralization of antibody binding to the envelope glycoproteins.


Assuntos
Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Afinidade de Anticorpos , Linhagem Celular , Epitopos/imunologia , Genes Reporter , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/fisiologia , Humanos , Luciferases , Testes de Neutralização , Replicação Viral
14.
Biochemistry ; 45(36): 10973-80, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16953583

RESUMO

NBD-556 and the chemically and structurally similar NBD-557 are two low-molecular weight compounds that reportedly block the interaction between the HIV-1 envelope glycoprotein gp120 and its receptor, CD4. NBD-556 binds to gp120 with a binding affinity of 2.7 x 10(5) M(-1) (K(d) = 3.7 muM) in a process characterized by a large favorable change in enthalpy partially compensated by a large unfavorable entropy change, a thermodynamic signature similar to that observed for binding of sCD4 to gp120. NBD-556 binding is associated with a large structuring of the gp120 molecule, as also demonstrated by CD spectroscopy. NBD-556, like CD4, activates the binding of gp120 to the HIV-1 coreceptor, CCR5, and to the 17b monoclonal antibody, which recognizes the coreceptor binding site of gp120. NBD-556 stimulates HIV-1 infection of CD4-negative, CCR5-expressing cells. The thermodynamic signature of the binding of NBD-556 to gp120 is very different from that of another viral entry inhibitor, BMS-378806. Whereas NBD-556 binds gp120 with a large favorable enthalpy and compensating unfavorable entropy changes, BMS-378806 does so with a small binding enthalpy change in a mostly entropy-driven process. NBD-556 is a competitive inhibitor of sCD4 and elicits a similar structuring of the coreceptor binding site, whereas BMS-378806 does not compete with sCD4 and does not induce coreceptor binding. These studies demonstrate that low-molecular-weight compounds can induce conformational changes in the HIV-1 gp120 glycoprotein similar to those observed upon CD4 binding, revealing distinct strategies for inhibiting the function of the HIV-1 gp120 envelope glycoprotein. Furthermore, competitive and noncompetitive compounds have characteristic thermodynamic signatures that can be used to guide the design of more potent and effective viral entry inhibitors.


Assuntos
Fármacos Anti-HIV/metabolismo , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Mimetismo Molecular , Oxalatos/metabolismo , Piperidinas/metabolismo , Termodinâmica , Animais , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Ligação Competitiva , Antígenos CD4/efeitos dos fármacos , Calorimetria/métodos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Dicroísmo Circular , Proteína gp120 do Envelope de HIV/química , HIV-1/genética , HIV-1/patogenicidade , Humanos , Oxalatos/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Conformação Proteica , Receptores CCR5/efeitos dos fármacos , Receptores CCR5/metabolismo
15.
J Virol ; 80(9): 4388-95, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16611898

RESUMO

The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a homotrimer of gp120/gp41 heterodimers to support virus entry. During the process of virus entry, an individual HIV-1 envelope glycoprotein trimer binds the cellular receptors CD4 and CCR5/CXCR4 and mediates the fusion of the viral and the target cellular membranes. By studying the function of heterotrimers between wild-type and nonfunctional mutant envelope glycoproteins, we found that two wild-type subunits within an envelope glycoprotein trimer are required to support virus entry. Complementation between HIV-1 envelope glycoprotein mutants defective in different functions to allow virus entry was not evident. These results assist our understanding of the mechanisms whereby the HIV-1 envelope glycoproteins mediate virus entry and membrane fusion and guide attempts to inhibit these processes.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/química , HIV-1/fisiologia , Fusão de Membrana/fisiologia , Linhagem Celular , Proteína gp120 do Envelope de HIV/genética , Proteína gp160 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , Humanos , Modelos Biológicos , Mutação/genética , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
16.
J Virol ; 79(19): 12132-47, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16160141

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.


Assuntos
HIV-1/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Vírus do Sarcoma Aviário/fisiologia , Linhagem Celular , Humanos , Vírus da Influenza A/fisiologia , Vírus da Leucemia Murina/fisiologia , Fusão de Membrana , Mutação , Proteínas do Envelope Viral/química
17.
J Virol ; 79(9): 5616-24, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15827176

RESUMO

Neutralizing antibodies often recognize regions of viral envelope glycoproteins that play a role in receptor binding or other aspects of virus entry. To address whether this is a necessary feature of a neutralizing antibody, we identified the V4 region of the gp120 envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) as a sequence that is tolerant of drastic change and thus appears to play a negligible role in envelope glycoprotein function. An artificial epitope tag was inserted into the V4 region without a significant effect on virus entry or neutralization by antibodies that recognize HIV-1 envelope glycoprotein sequences. An antibody directed against the artificial epitope tag was able to neutralize the modified, but not the wild-type, HIV-1. Thus, the specific target of a neutralizing antibody need not contribute functionally to the process of virus entry.


Assuntos
Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Epitopos/genética , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , HIV-1/fisiologia , Dados de Sequência Molecular , Testes de Neutralização , Proteínas Recombinantes/imunologia , Replicação Viral/imunologia
18.
J Virol ; 79(6): 3500-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15731244

RESUMO

The human immunodeficiency virus envelope glycoproteins function as trimers on the viral surface, where they are targeted by neutralizing antibodies. Different monoclonal antibodies neutralize human immunodeficiency virus type 1 (HIV-1) infectivity by binding to structurally and functionally distinct moieties on the envelope glycoprotein trimer. By measuring antibody neutralization of viruses with mixtures of neutralization-sensitive and neutralization-resistant envelope glycoproteins, we demonstrate that the HIV-1 envelope glycoprotein trimer is inactivated by the binding of a single antibody molecule. Virus neutralization requires essentially all of the functional trimers to be occupied by at least one antibody. This model applies to antibodies differing in neutralizing potency and to virus isolates with various neutralization sensitivities. Understanding these requirements for HIV-1 neutralization by antibodies will assist in establishing goals for an effective AIDS vaccine.


Assuntos
Sítios de Ligação de Anticorpos , Produtos do Gene env/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/imunologia , Reações Antígeno-Anticorpo , Antígenos HIV , Testes de Neutralização
19.
Virology ; 332(1): 369-83, 2005 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-15661168

RESUMO

Soluble forms of the trimeric human immunodeficiency virus (HIV-1) envelope glycoproteins are important tools for structural studies and in the construction of improved immunogens. We found that a substantial fraction of soluble envelope glycoprotein trimers contain inter-subunit disulfide bonds (inter-S-S bonds) that render the trimers resistant to heat and denaturing agents. These inter-S-S bonds can be reduced without disrupting the trimers by treatment with a low concentration of beta-mercaptoethanol or DTT. Antibody mapping studies suggest that the soluble HIV-1 envelope glycoprotein trimers lacking the inter-S-S bonds exhibit a conformation closer to that of the native HIV-1 envelope glycoprotein complex. However, reducing these inter-S-S bonds had only modest effects on the inefficient elicitation of neutralizing antibodies by the soluble trimers. These studies provide guidance in improving the resemblance of tractable, soluble forms of the HIV-1 envelope glycoproteins to the native virion spikes.


Assuntos
Dissulfetos/química , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1/química , Animais , Linhagem Celular , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/metabolismo , Humanos , Camundongos
20.
Virology ; 331(1): 33-46, 2005 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-15582651

RESUMO

The elicitation of broadly neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, gp120 and gp41, remains a major challenge. Attempts to utilize monomeric gp120 as an immunogen to elicit high titers of neutralizing antibodies have been disappointing. Envelope glycoprotein constructs that better reflect the trimeric structure of the functional envelope spike have exhibited improved immunogenicity compared with monomeric gp120. We have described soluble gp140 ectodomain constructs with a heterologous trimerization motif; these have previously been shown to elicit antibodies in mice that were able to neutralize a number of HIV-1 isolates, among them primary isolate viruses. Recently, solid-phase proteoliposomes retaining the envelope glycoproteins as trimeric spikes in a physiologic membrane setting have been described. Here, we compare the immunogenic properties of these two trimeric envelope glycoprotein formulations and monomeric gp120 in rabbits. Both trimeric envelope glycoprotein preparations generated neutralizing antibodies more effectively than gp120. In contrast to monomeric gp120, the trimeric envelope glycoproteins elicited neutralizing antibodies with some breadth of neutralization. Furthermore, repeated boosting with the soluble trimeric formulations resulted in an increase in potency that allowed neutralization of a subset of neutralization-resistant HIV-1 primary isolates. We demonstrate that the neutralization is concentration-dependent, is mediated by serum IgG and that the major portion of the neutralizing activity is not directed against the gp120 V3 loop. Thus, mimics of the trimeric envelope glycoprotein spike described here elicit HIV-1-neutralizing antibodies that could contribute to a protective immune response and provide platforms for further modifications to improve the efficiency of this process.


Assuntos
Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Animais , Proteína gp120 do Envelope de HIV/biossíntese , Imunização Secundária , Imunoglobulina G/sangue , Lipossomos , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Secundária de Proteína , Proteolipídeos/imunologia , Coelhos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA