Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(8): 4132-4141, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38365593

RESUMO

Porous heterogeneous adsorbents, those composed of multiple pore structures and surface chemical adsorption sites, can result in various gas or vapor adsorption isotherms, including five types of IUPAC adsorption isotherms and stepwise adsorption isotherms that have been difficult to model using a single adsorption equilibrium model. The limitation of the above equilibrium model further restricts the calculations of complex stepwise breakthrough curves. To bridge the adsorption data and adsorption process, it is important to first develop a simple model or method to describe these isotherms of various complex adsorption systems. In this work, assuming that the effect of the diffusion rate can be neglected under the static condition and the adsorption process is discontinuous, the number of adsorption isotherm inflection points can be used to represent the changed number of adsorption interactions. With the introduction of the polynomial structure, a series of empirical or semi-empirical polynomial adsorption models were developed. The N-site polynomial Langmuir-Freundlich equation could accurately fit common type I, II, III, IV, and V adsorption isotherms and complex stepwise adsorption isotherms covering various adsorbates, such as volatile organic compounds (VOCs), toxic industrial chemicals (TICs), water vapor, and carbon dioxide, as well as different adsorbents, such as metal/covalent organic frameworks (MOFs/COFs), zeolites, and porous carbons. Similarly, the introduction of a polynomial structure, such as the N-site polynomial Yoon-Nelson equation, was also successful in the description of interesting stepwise breakthrough curves. This work provides a more accurate adsorption equilibrium model to characterize all types of isotherms. As a foundation model, it is expected to be used to simulate the gas-solid adsorption process inside the fixed and fluidized beds packed with porous adsorbents.

2.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985410

RESUMO

Cyanogen chloride (CNCl) is highly toxic and volatile, and it is difficult to effectively remove via porous substances such as activated carbon due to the weak interaction between CNCl and the adsorbent surface. Developing a highly effective elimination material against CNCl is of great importance in military chemical protection. In this work, a new metal-organic framework (MOF) CuBTC@PA-PEI (polyacrylate-polyethyleneimine) composite was prepared and exhibited excellent CNCl elimination performance in the breakthrough tests. PEI was used for the functionalization of PA with amino groups, which is beneficial to anchor with metal ions of MOF. Afterward, the growth of MOF occurred on the surface and in the pores of the matrix by molecular self-assembly via our newly proposed stepwise impregnation layer-by-layer growth method. Breakthrough tests were performed to evaluate the elimination performance of the composites against CNCl. Compared with the pristine CuBTC powder, the CuBTC@PA-PEI composite exhibited better adsorption capacity and a longer breakthrough time. By compounding with the PA matrix, a hierarchically porous structure of CuBTC@PA-PEI composite was constructed, which provides a solution to the mass transfer problem of pure microporous MOF materials. It also solves the problems of MOF molding and lays a foundation for the practical application of MOF.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839095

RESUMO

NH3 is a typical alkaline gaseous pollutant widely derived from industrial production and poses great risks to humans and other biota. Metal-organic frameworks (MOFs) have excellent adsorption capacities relative to materials traditionally used to adsorb NH3. However, in practice, applications of MOFs as adsorbents are restricted because of its powder form. We prepared a polyamide (PA) macroporous polyester substrate using an emulsion template method and modified the surface with polyethylenimine (PEI) to improve the MOF growth efficiency on the substrate. The difficulty of loading the MOF because of the fast nucleation rate inside the PA macroporous polyester substrate was solved using a stepwise impregnation layer-by-layer (LBL) growth method, and a PA-PEI-MOF303(Al) hierarchical pore composite that very efficiently adsorbed NH3 was successfully prepared. The PA-PEI-MOF303(Al) adsorption capacity for NH3 was 16.07 mmol·g-1 at 298 K and 100 kPa, and the PA-PEI-MOF303(Al) could be regenerated repeatedly under vacuum at 423 K. The NH3 adsorption mechanism was investigated by in situ Fourier transform infrared spectroscopy and by performing two-dimensional correlation analysis. Unlike for the MOF303(Al) powder, the formation of multi-site hydrogen bonds between Al-O-Al/C-OH, N-H, -OH, C=O, and NH3 in PA-PEI-MOF303(Al) was found to be an important reason for efficient NH3 adsorption. This study will provide a reference for the preparation of other MOF-polymer composites.

4.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296717

RESUMO

Cyanide gas is highly toxic and volatile and is among the most typical toxic and harmful pollutants to human health and the environment found in industrial waste gas. In the military context, cyanide gas has been used as a systemic toxic agent. In this paper, we review cyanide gas elimination methods, focusing on adsorption and catalysis approaches. The research progress on materials capable of affecting cyanide gas adsorption and catalytic degradation is discussed in depth, and the advantages and disadvantages of various materials are summarized. Finally, suggestions are provided for future research directions with respect to cyanide gas elimination materials.


Assuntos
Cianetos , Poluentes Ambientais , Humanos , Resíduos Industriais , Adsorção , Catálise
5.
Photochem Photobiol ; 96(5): 1088-1095, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32125708

RESUMO

Hexyl aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinic acid (5-ALA) and can induce more protoporphyrin IX (PpIX) formation and stronger fluorescence intensity (FI) than 5-ALA, which will greatly facilitate photodynamic diagnosis and therapy. The main drawback of HAL is its low solubility in neutral aqueous media. In this study, surfactants were used to increase HAL solubility in the cell culture medium and serum, followed by in vitro fluorescence formation measurement in human pancreatic cancer cells (SW1990) and in vivo fluorescence detection in tumor-bearing mice. The results showed that Tween 80 (TW80) and Kolliphor® HS 15 (HS15) increased the solubility of HAL in the selected media. Although TW80 and HS15 exhibited in vitro cytotoxicity at high concentrations (5 mg mL-1 ), they facilitated fluorescent signal formation at the early stage of cell incubation. When surfactants were used, the FI should be determined without the routine washing process because surfactant-containing culture medium caused the loss of synthesized PpIX during the washing process. When HAL dissolved in TW80 solution was injected intraperitoneally into pancreatic cancer-bearing mice at a dose of 50 mg kg-1 , the tumors exhibited red fluorescence, which indicated that systemic administration of surfactant-solubilized HAL might be applicable for tumor fluorescence detection in vivo.


Assuntos
Ácido Aminolevulínico/química , Neoplasias/diagnóstico , Tensoativos/química , Animais , Linhagem Celular Tumoral , Estudos de Viabilidade , Fluorescência , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/patologia , Imagem Óptica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA