Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Autism Res ; 11(5): 713-725, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29517857

RESUMO

Measuring treatment efficacy in individuals with Autism Spectrum Disorder (ASD) relies primarily on behaviors, with limited evidence as to the neural mechanisms underlying these behavioral gains. This pilot study addresses this void by investigating neural and behavioral changes in a Phase I trial in young adults with high-functioning ASD who received an evidence-based behavioral intervention, Virtual Reality-Social Cognition Training over 5 weeks for a total of 10 hr. The participants were tested pre- and post-training with a validated biological/social versus scrambled/nonsocial motion neuroimaging task, previously shown to activate regions within the social brain networks. Three significant brain-behavior changes were identified. First, the right posterior superior temporal sulcus, a hub for socio-cognitive processing, showed increased brain activation to social versus nonsocial stimuli in individuals with greater gains on a theory-of-mind measure. Second, the left inferior frontal gyrus, a region for socio-emotional processing, tracked individual gains in emotion recognition with decreased activation to social versus nonsocial stimuli. Finally, the left superior parietal lobule, a region for visual attention, showed significantly decreased activation to nonsocial versus social stimuli across all participants, where heightened attention to nonsocial contingencies has been considered a disabling aspect of ASD. This study provides, albeit preliminary, some of the first evidence of the harnessable neuroplasticity in adults with ASD through an age-appropriate intervention in brain regions tightly linked to social abilities. This pilot trial motivates future efforts to develop and test social interventions to improve behaviors and supporting brain networks in adults with ASD. Autism Res 2018, 11: 713-725. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY: This study addresses how the behavioral changes after treatment for ASD reflect underlying brain changes. Before and after receiving VR-SCT, young adults with high-functioning ASD passively viewed biological motion stimuli in a MRI scanner, tapping changes in the social brain network. The results reveal neuroplasticity in this age population, extending the window of opportunity for interventions to impact social competency in adults with ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Comportamento Social , Terapia de Exposição à Realidade Virtual/métodos , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
2.
Behav Res Ther ; 93: 55-66, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28384509

RESUMO

Autism Spectrum Disorder (ASD) is characterized by remarkable heterogeneity in social, communication, and behavioral deficits, creating a major barrier in identifying effective treatments for a given individual with ASD. To facilitate precision medicine in ASD, we utilized a well-validated biological motion neuroimaging task to identify pretreatment biomarkers that can accurately forecast the response to an evidence-based behavioral treatment, Virtual Reality-Social Cognition Training (VR-SCT). In a preliminary sample of 17 young adults with high-functioning ASD, we identified neural predictors of change in emotion recognition after VR-SCT. The predictors were characterized by the pretreatment brain activations to biological vs. scrambled motion in the neural circuits that support (a) language comprehension and interpretation of incongruent auditory emotions and prosody, and (b) processing socio-emotional experience and interpersonal affective information, as well as emotional regulation. The predictive value of the findings for individual adults with ASD was supported by regression-based multivariate pattern analyses with cross validation. To our knowledge, this is the first pilot study that shows neuroimaging-based predictive biomarkers for treatment effectiveness in adults with ASD. The findings have potentially far-reaching implications for developing more precise and effective treatments for ASD.


Assuntos
Transtorno Autístico/terapia , Terapia Comportamental/métodos , Encéfalo/diagnóstico por imagem , Percepção de Movimento/fisiologia , Comportamento Social , Percepção Social , Realidade Virtual , Adolescente , Adulto , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
3.
J Neurodev Disord ; 9: 1, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28115995

RESUMO

BACKGROUND: Disruptive behavior in autism spectrum disorder (ASD) is an important clinical problem, but its neural basis remains poorly understood. The current research aims to better understand the neural underpinnings of disruptive behavior in ASD, while addressing whether the neural basis is shared with or separable from that of core ASD symptoms. METHODS: Participants consisted of 48 male children and adolescents: 31 ASD (7 had high disruptive behavior) and 17 typically developing (TD) controls, well-matched on sex, age, and IQ. For ASD participants, autism symptom severity, disruptive behavior, anxiety symptoms, and ADHD symptoms were measured. All participants were scanned while viewing biological motion (BIO) and scrambled motion (SCR). Two fMRI contrasts were analyzed: social perception (BIO > SCR) and Default Mode Network (DMN) deactivation (fixation > BIO). Age and IQ were included as covariates of no interest in all analyses. RESULTS: First, the between-group analyses on BIO > SCR showed that ASD is characterized by hypoactivation in the social perception circuitry, and ASD with high or low disruptive behavior exhibited similar patterns of hypoactivation. Second, the between-group analyses on fixation > BIO showed that ASD with high disruptive behavior exhibited more restricted and less DMN deactivation, when compared to ASD with low disruptive behavior or TD. Third, the within-ASD analyses showed that (a) autism symptom severity (but not disruptive behavior) was uniquely associated with less activation in the social perception regions including the posterior superior temporal sulcus and inferior frontal gyrus; (b) disruptive behavior (but not autism symptom severity) was uniquely associated with less DMN deactivation in the medial prefrontal cortex (MPFC) and lateral parietal cortex; and (c) anxiety symptoms mediated the link between disruptive behavior and less DMN deactivation in both anterior cingulate cortex (ACC) and MPFC, while ADHD symptoms mediated the link primarily in ACC. CONCLUSIONS: In boys with ASD, disruptive behavior has a neural basis in reduced DMN deactivation, which is distinct and separable from that of core ASD symptoms, with the latter characterized by hypoactivation in the social perception circuitry. These differential neurobiological markers may potentially serve as neural targets or predictors for interventions when treating disruptive behavior vs. core symptoms in ASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA