Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Front Immunol ; 15: 1365604, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779684

RESUMO

Background: Observational studies have indicated a possible connection between Helicobacter pylori (H. pylori) infection and eosinophilic esophagitis (EoE), but their causal relationship has yet to be established. To investigate the causal associations between H. pylori infection and EoE, we performed a Mendelian randomization (MR) analysis. Methods: Firstly, we conducted both univariable and multivariable Mendelian randomization (MR) analyses. Furthermore, a two-step MR was carried out to ascertain the potential underlying pathways of these associations, particularly the involvement of inflammatory cytokines. We employed the inverse-variance weighted (IVW) method as the main analysis in our MR study. To enhance the credibility of the results, we also conducted several sensitivity analyses. Results: Our study demonstrated a noteworthy correlation between genetically predicted anti-H. pylori IgG antibody levels and a reduced risk of EoE (OR=0.325, 95% CI=0.165-0.643, P value=0.004, adj p value=0.009). No significant causal associations were detected between other H. pylori antibodies and EoE in our study. When it comes to multivariable MR analysis controlling for education attainment, household income, and deprivation individually, the independent causal impact of anti-H. pylori IgG on EoE persisted. Surprisingly, the two-step MR analysis indicated that inflammatory factors (IL-4, IL-5, IL-13, IL-17, and IFN-γ) did not appear to mediate the protective effect of H. pylori infection against EoE. Conclusion: Findings suggested that among the range of H. pylori-related antibodies, anti-H. pylori IgG antibody is the sole causal factor associated with protection against EoE. Certain inflammatory factors may not be involved in mediating this association. These findings make a significant contribution to advancing our understanding of the pathogenesis of EoE and its evolving etiology.


Assuntos
Anticorpos Antibacterianos , Esofagite Eosinofílica , Infecções por Helicobacter , Helicobacter pylori , Análise da Randomização Mendeliana , Humanos , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/complicações , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/epidemiologia , Esofagite Eosinofílica/etiologia , Esofagite Eosinofílica/microbiologia , Helicobacter pylori/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Polimorfismo de Nucleotídeo Único , Citocinas , Predisposição Genética para Doença
2.
Clin Transl Oncol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625495

RESUMO

BACKGROUND: The use of immune checkpoint inhibitors has led to an increase in randomized controlled trials exploring various first-line combination treatment regimens. With the introduction of new PD-1/PD-L1 inhibitors, there are now more clinical options available. For the first time, the AK105 monoclonal antibody Penpulimab, developed in China, was included. The AK105-302 Phase III trial studied the efficacy and safety of Penpulimab combined with chemotherapy in patients with advanced or metastatic squamous NSCLC. To determine the optimal treatment options, we conducted an updated network meta-analysis to compare the effectiveness and safety of these regimens. METHODS: The system retrieves data from Chinese and English electronic databases, Clinical Trials, and the gov Clinical Trial Registration website up to September 6, 2023. The study indirectly compared the efficacy and safety of PD-1/PD-L1 combination regimens, including overall survival (OS), progression-free survival (PFS), objective response rate (ORR), all-grade adverse events, and above-grade III adverse events. Subgroup analyses were conducted based on programmed death ligand 1 (PD-L1) level, histological type, ECOG score, sex, and smoking history. RESULTS: Nineteen RCTS were included, with a total of ten thousand eight hundred patients. Penpulimab plus chemotherapy (Pen + CT) provided the best OS (HR = 0.55, 95% CI 0.38-0.81) for PD-L1 patients with non-selective advanced NSCLC. Except Nivolumab plus Ipilimumab (Niv + Ipi), other PD-1/PD-L1 combination therapies significantly extended PFS compared with CT, and Nivolumab plus Bevacizumab combined with chemotherapy (Niv + Bev + CT) (HR = 0.43, 95% CI 0.26-0.74) provided the best PFS benefit and was comparable to Pen + CT (HR = 1.0) for PFS prolongation. For ORR, except Niv + Ipi, all the other regimens significantly improved ORR compared with CT. In terms of safety, except Tor + CT, the incidence of any-grade AEs or grade ≥ 3 adverse events may be higher than those of chemotherapy. The subgroup analysis revealed that for patients with PD-L1 levels below 1%, treatment with Tor + CT resulted in the best progression-free survival (HR = 0.47, 95% CI 0.25-0.86). For patients with PD-L1 levels of 1% or higher, Sintilimab plus chemotherapy (Sin + CT) (HR = 0.56, 95% CI 0.31-0.99) and Camrelizumab plus chemotherapy (Cam + CT) (HR = 0.43, 95% CI 0.28-0.64) were associated with the best overall survival and progression-free survival, respectively. For patients with SqNSCLC, combined immunotherapy may provide greater survival benefits. For patients with Non-sqNSCLC, Niv + Bev + CT and Tor + CT were associated with optimal PFS and OS, respectively. Cam + CT provided the best PFS in male patients with a history of smoking and an ECOG score of 0. In both female and non-smoking patient subgroups, Pem + CT was associated with the best PFS and OS benefits. CONCLUSION: For patients with advanced non-selective PD-L1 NSCLC, two effective regimens are Pen + CT and Niv + Bev + CT, which rank first in OS and PFS among all patients. Cam + CT and Tor + CT have advantages for OS in patients with SqNSCLC and Non-sqNSCLC, respectively. Niv + Ipi + CT provided the best OS benefit for patients with an ECOG score of 0, while Pem + CT may be the most effective treatment for patients with an ECOG score of 1. Pem + CT has a better effect on female patients and non-smokers. Sin + CT was found to be the most effective treatment for male patients and the smoking subgroup, while Cam + CT was found to be the most effective for PFS. In addition, Tor + CT was associated with the best PFS for patients with negative PD-L1 expression. Pem + CT was found to significantly improve both PFS and OS compared to CT alone. For patients with positive PD-L1 expression, Sin + CT and Cam + CT were found to be optimal for OS and PFS, respectively. It is important to note that, with the exception of Tor + CT, the toxicity of the other combinations was higher than that of CT alone.

3.
Int J Biol Macromol ; 266(Pt 2): 131277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565366

RESUMO

Bacteria-infected wound healing has attracted widespread attention in biomedical engineering. Wound dressing is a potential strategy for repairing infectious wounds. However, the development of wound dressing with appropriate physiochemical, antibacterial, and hemostatic properties, remains challenging. Hence, there is a motivation to develop new synthetic dressings to improve bacteria-infected wound healing. Here, we fabricate a biocompatible sponge through the covalent crosslinking of collagen (Col), quaternized chitosan (QCS), and graphene oxide (GO). The resulting Col-QCS-GO sponge shows an elastic modulus of 1.93-fold higher than Col sponge due to enhanced crosslinking degree by GO incorporation. Moreover, the fabricated Col-QCS-GO sponge shows favorable porosity (84.30 ± 3.12 %), water absorption / retention (2658.0 ± 113.4 % / 1114.0 ± 65.7 %), and hemostasis capacities (blood loss <50.0 mg). Furthermore, the antibacterial property of the Col-QCS-GO sponge under near-infrared (NIR) irradiation is significantly enhanced (the inhibition rates are 99.9 % for S. aureus and 99.9 % for E. coli) due to the inherent antibacterial properties of QCS and the photothermal antibacterial capabilities of GO. Finally, the Col-QCS-GO+NIR sponge exhibits the lowest percentage of wound area (9.05 ± 1.42 %) at day 14 compared to the control group (31.61 ± 1.76 %). This study provides new insights for developing innovative sponges for bacteria-infected wound healing.


Assuntos
Antibacterianos , Quitosana , Grafite , Hemostáticos , Cicatrização , Animais , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Bandagens , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/química , Quitosana/farmacologia , Colágeno/química , Colágeno/farmacologia , Escherichia coli/efeitos dos fármacos , Grafite/química , Grafite/farmacologia , Hemostasia/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Porosidade , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
4.
Insects ; 15(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535397

RESUMO

Baculovirus infection can prevent the pupation of insects. Juvenile hormone (JH) plays a vital role in regulating insect molting and metamorphosis. However, the molecular mechanism of baculovirus preventing the pupation of larvae by regulating the Juvenile hormone (JH) pathway is still unclear. In this study, we found that the Mamestra brassicae multiple nucleopolyhedroviruses (MbMNPV) infection prolonged the larval stage of fourth instar Helicoverpa armigera (H. armigera) by 0.52 d and caused an increase in JH titer. To identify the genes that contribute to the JH increase in H. armigera-MbMNPV interaction, we analyzed mRNA expression profiles of the fat bodies of H. armigera infected by MbMNPV. A total of 3637 differentially expressed mRNAs (DE-mRNAs) were filtered out through RNA-seq analysis. These DE-mRNAs were mainly enriched in Spliceosome, Ribosome biogenesis in eukaryotes, Aminoacyl-tRNA biosynthesis, Mismatch repair, and RNA degradation signaling pathway, which are related to the virus infection. Real-time PCR was used to verify the RNA sequencing results. To find out which genes caused the increase in JH titer, we analyzed all the DE-mRNAs in the transcriptome and found that the JHE and JHEH genes, which were related to JH degradation pathway, were down-regulated. JHE and JHEH genes in the larvae of MbMNPV-infected group were significantly down-regulated compared with the control group by RT-qPCR. We further proved that the JH is degraded by JHE in H. armigera larvae by RNAi, ELISA, RT-qPCR and bioassay, while the hydrolysis of JH by JHEH in H. armigera larvae can almost be ignored. Knocking down of HaJHE promoted the expression of the JH receptor gene Met and the downstream gene Kr-h1, and the replication of MbMNPV. This study clarified that JH is mainly degraded by JHE in H. armigera larvae. The MbMNPV infection of H. armigera larvae leads to the increase of JH titer by inhibiting the expression of JHE. The increase in JH titer promotes the expression of the JH receptor gene Met and the downstream gene Kr-h1, which prevents the pupation of H. armigera, and promotes MbMNPV replication. This study provides new insights into H. armigera and MbMNPV interaction mechanisms.

5.
J Transl Med ; 22(1): 224, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429799

RESUMO

BACKGROUND: In recent years, natural bone extracellular matrix (ECM)-inspired materials have found widespread application as scaffolds for bone tissue engineering. However, the challenge of creating scaffolds that mimic natural bone ECM's mechanical strength and hierarchical nano-micro-macro structures remains. The purposes of this study were to introduce an innovative bone ECM-inspired scaffold that integrates a 3D-printed framework with hydroxyapatite (HAp) mineralized graphene oxide-collagen (GO-Col) microscaffolds and find its application in the repair of mandibular bone defects. METHODS: Initially, a 3D-printed polycaprolactone (PCL) scaffold was designed with cubic disks and square pores to mimic the macrostructure of bone ECM. Subsequently, we developed multi-layer mineralized GO-Col-HAp microscaffolds (MLM GCH) to simulate natural bone ECM's nano- and microstructural features. Systematic in vitro and in vivo experiments were introduced to evaluate the ECM-inspired structure of the scaffold and to explore its effect on cell proliferation and its ability to repair rat bone defects. RESULTS: The resultant MLM GCH/PCL composite scaffolds exhibited robust mechanical strength and ample assembly space. Moreover, the ECM-inspired MLM GCH microscaffolds displayed favorable attributes such as water absorption and retention and demonstrated promising cell adsorption, proliferation, and osteogenic differentiation in vitro. The MLM GCH/PCL composite scaffolds exhibited successful bone regeneration within mandibular bone defects in vivo. CONCLUSIONS: This study presents a well-conceived strategy for fabricating ECM-inspired scaffolds by integrating 3D-printed PCL frameworks with multilayer mineralized porous microscaffolds, enhancing cell proliferation, osteogenic differentiation, and bone regeneration. This construction approach holds the potential for extension to various other biomaterial types.


Assuntos
Durapatita , Grafite , Osteogênese , Ratos , Animais , Durapatita/análise , Durapatita/metabolismo , Durapatita/farmacologia , Alicerces Teciduais/química , Regeneração Óssea , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Engenharia Tecidual , Poliésteres/química , Mandíbula , Impressão Tridimensional
6.
Sci Rep ; 14(1): 6877, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519538

RESUMO

Newborns are as the primary recipients of blood transfusions. There is a possibility of an association between blood transfusion and unfavorable outcomes. Such complications not only imperil the lives of newborns but also cause long hospitalization. Our objective is to explore the predictor variables that may lead to extended hospital stays in neonatal intensive care unit (NICU) patients who have undergone blood transfusions and develop a predictive nomogram. A retrospective review of 539 neonates who underwent blood transfusion was conducted using median and interquartile ranges to describe their length of stay (LOS). Neonates with LOS above the 75th percentile (P75) were categorized as having a long LOS. The Least Absolute Shrinkage and Selection Operator (LASSO) regression method was employed to screen variables and construct a risk model for long LOS. A multiple logistic regression prediction model was then constructed using the selected variables from the LASSO regression model. The significance of the prediction model was evaluated by calculating the area under the ROC curve (AUC) and assessing the confidence interval around the AUC. The calibration curve is used to further validate the model's calibration and predictability. The model's clinical effectiveness was assessed through decision curve analysis. To evaluate the generalizability of the model, fivefold cross-validation was employed. Internal validation of the models was performed using bootstrap validation. Among the 539 infants who received blood transfusions, 398 infants (P75) had a length of stay (LOS) within the normal range of 34 days, according to the interquartile range. However, 141 infants (P75) experienced long LOS beyond the normal range. The predictive model included six variables: gestational age (GA) (< 28 weeks), birth weight (BW) (< 1000 g), type of respiratory support, umbilical venous catheter (UVC), sepsis, and resuscitation frequency. The area under the receiver operating characteristic (ROC) curve (AUC) for the training set was 0.851 (95% CI 0.805-0.891), and for the validation set, it was 0.859 (95% CI 0.789-0.920). Fivefold cross-validation indicates that the model has good generalization ability. The calibration curve demonstrated a strong correlation between the predicted risk and the observed actual risk, indicating good consistency. When the intervention threshold was set at 2%, the decision curve analysis indicated that the model had greater clinical utility. The results of our study have led to the development of a novel nomogram that can assist clinicians in predicting the probability of long hospitalization in blood transfused infants with reasonable accuracy. Our findings indicate that GA (< 28 weeks), BW(< 1000 g), type of respiratory support, UVC, sepsis, and resuscitation frequency are associated with a higher likelihood of extended hospital stays among newborns who have received blood transfusions.


Assuntos
Unidades de Terapia Intensiva Neonatal , Polienos , Pironas , Sepse , Recém-Nascido , Lactente , Humanos , Tempo de Internação , Hospitalização , Peso ao Nascer , Transfusão de Sangue , Nomogramas , Estudos Retrospectivos
7.
Phytomedicine ; 126: 155435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394727

RESUMO

BACKGROUND: Accumulating evidence indicates the crucial role of microglia-mediated inflammation and the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis in the pathogenesis of Parkinson's disease (PD). Baohuoside I, a natural flavonoid extracted from Herba Epimedii, has been shown to possess anti-inflammatory effects, but its potential neuroprotective effects and mechanism against PD have not been documented. STUDY DESIGN AND METHODS: The anti-inflammatory effects of Baohuoside I were evaluated by LPS-induced BV2 cells or primary microglia isolated from wide type or G protein-coupled estrogen receptor (GPER) gene knockout mice. The underlying mechanism related to GPER-mediated NLRP3 inflammasome inhibition was further explored using LPS-induced GPER+/+ or GPER-/- mouse models of PD. The neuroprotective effects of Baohuoside I were detected through western blot analysis, real-time PCR, molecular docking, mouse behavioral tests, immunofluorescence, and immunohistochemistry. RESULTS: Baohuoside I significantly alleviated LPS-induced neuroinflammation by inhibiting the activation of NF-κB signal and the increase of pyroptosis levels as evidenced by the downregulated expression of pyroptosis-related proteins (NLRP3, ASC, pro-Caspase-1, IL-1ß) in microglia cells. Intragastric administration of Baohuoside I protected against LPS-induced motor dysfunction and loss of dopaminergic neurons, reduced pro-inflammatory cytokines expressions, and inhibited microglial (Iba-1) and astrocyte (GFAP) activation in the nigrostriatal pathway in LPS-induced mouse model of PD. Pretreatment with GPER antagonist G15 in microglia cells or GPER gene deletion in mice significantly blocked the inhibitory effects of Baohuoside I on LPS-induced neuroinflammation and activation of the NLRP3/ASC/Caspase-1 pathway. Molecular docking further indicated that Baohuoside I might bind to GPER directly with a binding energy of -10.4 kcal/mol. CONCLUSION: Baohuoside I provides neuroprotective effects against PD by inhibiting the activation of the NF-κB signal and NLRP3/ASC/Caspase-1 pathway. The molecular target for its anti-inflammatory effects is proved to be GPER in the PD mouse model. Baohuoside I may be a valuable anti-neuroinflammatory agent and a drug with well-defined target for the treatment of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Caspases/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Microglia , Camundongos Endogâmicos C57BL
8.
Int J Biol Macromol ; 263(Pt 2): 130386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395288

RESUMO

The management of diabetic wounds poses a substantial economic and medical burden for diabetic patients. Oxidative stress and persistent bacterial infections are considered to be the primary factors. Qiai essential oil (QEO) exhibits various pharmacological characteristics, including inflammatory-reducing, antibacterial, and antioxidant properties. Nevertheless, the hydrophobic nature and propensity for explosive release of this substance present constraints on its potential for future applications. Here, we developed a stimulus-responsive hydrogel to overcome the multiple limitations of QEO-based wound dressings. The QEO was encapsulated within graphene oxide (GO) through repeated extrusion using an extruder. Subsequently, QEO@GO nanoparticles were incorporated into a Gelatin-methacryloyl (GelMA) hydrogel. The QEO@GO-GelMA hydrogel demonstrated controlled release ablation, photothermal antibacterial effects, and contact ablation against two representative bacterial strains. It effectively reduced reactive oxygen species (ROS) generation, promoted angiogenesis, and decreased levels of the pro-inflammatory cytokine interleukin-6 (IL-6), thereby accelerating the healing process of diabetic wounds. In addition, in vitro and in vivo tests provided further evidence of the favorable biocompatibility of this multifunctional hydrogel dressing. Overall, the QEO@GO-GelMA hydrogel provides numerous benefits, encompassing antimicrobial properties, ROS-scavenging abilities, anti-inflammatory effects, and the capacity to expedite diabetic wound healing. These attributes make it an optimal choice for diabetic wound management.


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Metacrilatos , Humanos , Espécies Reativas de Oxigênio , Gelatina , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Anti-Inflamatórios
9.
Technol Health Care ; 32(1): 255-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37125587

RESUMO

BACKGROUND: Research on the genetic mechanisms of hypertension has been a hot topic in the cardiovascular field. OBJECTIVE: To study the correlation between senile hypertension and traditional Chinese medicine (TCM) constitution and lipoprotein lipase (LPL) gene polymorphism and to provide the theoretical basis for TCM prevention and treatment of hypertension. METHODS: The elderly population in communities in Shanghai (hypertensive: 264 cases; non-hypertensive: 159 cases) was taken as the research object. Essential data and information on TCM constitution were collected. The LPL gene mutation was detected using the second-generation sequencing method. Statistical analysis was performed to clarify the relationship between hypertension and senile hypertension. The correlation of TCM constitution with risk factors and LPL gene polymorphisms was studied. RESULTS: The primary TCM constitutions in the hypertension group were phlegm-dampness constitution (51.52%), yin-deficiency constitution (17.42%), balanced constitution (15.53%), and yin-deficiency (9.43%). Logistic regression analysis showed that the phlegm-dampness constitution (P< 0.05, OR = 2.587) and yin-deficiency constitution (P< 0.01, OR = 2.693) were the risk constitutions of hypertension in the elderly. A total of 37 LPL gene mutation loci (SNP: 22; new discovery: 15) were detected in the LPL gene, and the mutation rates of rs254, rs255, rs3208305, rs316, rs11570891, rs328, rs11570893, and rs13702 were relatively high, which were 26.24%, 26.24%, 16.08%, 14.66%, 13.24%, 12.06%, and 10.64%. In the phlegm-dampness group, the proportion of rs254 CC type, rs255 TT type, and rs13702 TT type in the hypertensive group (77.21%, 77.21%, and 93.38%) was higher than that in the non-hypertensive group (56.41%, 56.41%, and 82.05%), The difference was statistically significant (P< 0.05). CONCLUSION: The phlegm-dampness constitution and yin-deficiency constitution are the risk factors of hypertension in the elderly; in the phlegm-dampness population, rs254 CC type, rs255 TT type, and rs13702 TT type are the risk factors for elderly hypertension.


Assuntos
Hipertensão , Medicina Tradicional Chinesa , Humanos , Idoso , Medicina Tradicional Chinesa/métodos , China/epidemiologia , Deficiência da Energia Yin , Hipertensão/genética , Fatores de Risco
10.
J Infect ; 88(2): 158-166, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101522

RESUMO

The symptoms of children infected with SARS-CoV-2 are mainly asymptomatic, mild, moderate, and a few severe cases. To understand the immune response characteristics of children infected with SARS-COV-2 who do not develop severe cases, 82 children infected with the SARS-CoV-2 delta strain were recruited in this study. Our results showed that high levels of IgG, IgM, and neutralization antibodies appeared in children infected with SARS-CoV-2. SARS-CoV-2 induced upregulation of both pro-inflammatory factors including TNF-α and anti-inflammatory factors including IL-4 and IL-13 in the children, even IL-10. The expression of INF-α in infected children also showed a significant increase compared to healthy children. However, IL-6, one of the important inflammatory factors, did not show an increase in infected children. It is worth noting that a large number of chemokines reduced in the SARS-CoV-2-infected children. Subsequently, TCR Repertoire, TCRß bias, and preferential usage were analyzed on data of TCR next-generation sequencing from 8 SARS-CoV-2-infected children and 8 healthy controls. We found a significant decrease in TCR clonal diversity and a significant increase in TCR clonal expansion in SARS-CoV-2-infected children compared to healthy children. The most frequent V and J genes in SARS-CoV-2 children were TRBV28 and TRBJ2-1. The most frequently VßJ gene pairing in SARS-CoV-2 infected children was TRBV20-1-TRBJ2-1. The strong antiviral antibody levels, low expression of key pro-inflammatory factors, significant elevation of anti-inflammatory factors, and downregulation of many chemokines jointly determine that SARS-CoV-2-infected children rarely develop severe cases. Overall, our findings shed a light on the immune response of non-severe children infected with SARS-CoV-2.


Assuntos
COVID-19 , Criança , Humanos , SARS-CoV-2 , Imunidade Celular , Anticorpos Antivirais , Anti-Inflamatórios , Quimiocinas , Receptores de Antígenos de Linfócitos T , Imunidade Humoral
11.
Int J Nanomedicine ; 18: 6725-6741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026526

RESUMO

Introduction: The formation of bone-like apatite (Ap) on natural polymers through biomimetic mineralization using simulated body fluid (SBF) can improve osteoconductivity and biocompatibility, while lowering immunological rejection. Nonetheless, the coating efficiency of the bone-like Ap layer on natural polymers requires improvement. Carbonyls (-COOH) and hydroxyls (-OH) are abundant in graphene oxide (GO), which may offer more active sites for biomimetic mineralization and promote the proliferation of rat bone marrow stromal cells (BMSCs). Methods: In this study, gelatin methacryloyl (GelMA) microgels were infused with GO (0, 0.5, 1, and 2 mg/mL) and embedded into microgels in SBF for 1, 7, and 14 days. Systematic in vitro and in vivo experiments were performed to evaluate the structure of the microgel and its effect on cell proliferation and ability to repair bone defects in rats. Results: The resulting GO-GelMA-Ap microgels displayed a porous, interconnected structure with uniformly coated surfaces in bone-like Ap, and the Ca/P ratio of the 1 mg/mL GO-GelMA-Ap group was comparable to that of natural bone tissue. Moreover, the 1 mg/mL GO-GelMA-Ap group exhibited a greater Ap abundance, enhanced proliferation of BMSCs in vitro and increased bone formation in vivo compared to the GelMA-Ap group. Discussion: Overall, this study offers a novel method for incorporating GO into microgels for bone tissue engineering to promote biomimetic mineralization.


Assuntos
Microgéis , Ratos , Animais , Biomimética , Gelatina/química , Apatitas , Engenharia Tecidual/métodos , Hidrogéis , Alicerces Teciduais/química
12.
Front Bioeng Biotechnol ; 11: 1251583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781532

RESUMO

Oral submucous fibrosis is a chronic, inflammatory and potentially malignant oral disease. Local delivery of triamcinolone to lesion site is a commonly used therapy. The existing methods for local drug delivery include topical administration and submucosal injection. However, in the wet and dynamic oral microenvironment, these methods have drawbacks such as limited drug delivery efficiency and injection pain. Therefore, it is urgently needed to develop an alternative local drug delivery system with high efficiency and painlessness. Inspired by the structure of band-aid, this study proposed a novel double-layered mucoadhesive microneedle patch for transmucosal drug delivery. The patch consisted of a mucoadhesive silk fibroin/tannic acid top-layer and a silk fibroin microneedle under-layer. When applying the annealing condition for the medium content of ß-sheets of silk fibroin, the microneedles in under-layer displayed both superior morphology and mechanical property. The mechanical strength of per needle (0.071N) was sufficient to penetrate the oral mucosa. Sequentially, the gelation efficiency of silk fibroin and tannic acid in top-layer was maximized as the weight ratio of tannic acid to silk fibroin reached 5:1. Moreover, in vitro results demonstrated the double-layered patch possessed undetectable cytotoxicity. The sustained release of triamcinolone was observed from the double-layered patch for at least 7 days. Furthermore, compared with other commercial buccal patches, the double-layered patch exhibited an enhanced wet adhesion strength of 37.74 kPa. In addition, ex vivo mucosal tissue penetration experiment confirmed that the double-layered patch could reach the lamina propria, ensuring effective drug delivery to the lesion site of oral submucous fibrosis. These results illustrate the promising potential of the drug-loaded mucoadhesive microneedle patch for the treatment of oral submucous fibrosis.

13.
Comput Biol Med ; 164: 107283, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536095

RESUMO

Resource- and time-consuming biological experiments are unavoidable in traditional drug discovery, which have directly driven the evolution of various computational algorithms and tools for drug-target interaction (DTI) prediction. For improving the prediction reliability, a comprehensive platform is highly expected as some previously reported webservers are small in scale, single-method, or even out of service. In this study, we integrated the multiple-conformation based docking, 2D/3D ligand similarity search and deep learning approaches to construct a comprehensive webserver, namely D3CARP, for target prediction and virtual screening. Specifically, 9352 conformations with positive control of 1970 targets were used for molecular docking, and approximately 2 million target-ligand pairs were used for 2D/3D ligand similarity search and deep learning. Besides, the positive compounds were added as references, and related diseases of therapeutic targets were annotated for further disease-based DTI study. The accuracies of the molecular docking and deep learning approaches were 0.44 and 0.89, respectively. And the average accuracy of five ligand similarity searches was 0.94. The strengths of D3CARP encompass the support for multiple computational methods, ensemble docking, utilization of positive controls as references, cross-validation of predicted outcomes, diverse disease types, and broad applicability in drug discovery. The D3CARP is freely accessible at https://www.d3pharma.com/D3CARP/index.php.


Assuntos
Aprendizado Profundo , Simulação de Acoplamento Molecular , Ligantes , Reprodutibilidade dos Testes , Algoritmos , Ligação Proteica
14.
Heliyon ; 9(6): e17305, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37426805

RESUMO

In this study, four kinds of Longjing tea, the famous flat green tea and the protected geographical indication product in China, were used to explore the quality difference of the same green tea due to the cultivar, geographic origin, and storage time under the premise of consistent picking conditions and processing technology using the widely targeted metabolomics. Results showed that 483 flavonoid metabolites with 10 subgroups of flavonoids were screened and 118 differential flavonoid metabolites were identified. The number and subgroups of differential flavonoid metabolites produced by different cultivars of Longjing tea were the largest, followed by storage time, and third by the geographic origin. Glycosidification and methylation or methoxylation were the main structural modifications of differential flavonoid metabolites. This study has enriched the understanding of the effects of the cultivar, the geographic origin, and the storage time on the flavonoid metabolic profiles of Longjing tea, and provided worthy information for the traceability of green tea.

15.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446470

RESUMO

An equiatomic CrCoNi medium-entropy alloy was subjected to high-energy shot peening (HESP) to fabricate a gradient nanostructure (GNS) in this work. The microstructures of the GNS samples at different depths within the deformed layer were thoroughly investigated. The microstructure exhibited a transformation from unstressed coarse grains to deformed coarse grains, followed by the formation of ultrafine grains, and ultimately reaching a final nanocrystalline structure with a uniform size of approximately 50 nm. Detailed structural analysis indicated that the deformation process was primarily influenced by the interaction between dislocations and deformation twins, which was attributed to the low stacking fault energy (SFE) of the alloy. The nanocrystalline mechanism was divided into three stages. In the coarse-grained deformation stage, the dislocation band divided twin/matrix lamellae into sub-segments, and the cross twin divided coarse grains into ultrafine grains simultaneously. In the ultrafine grain deformation stage, dislocations were arranged around the deformation twins in order to break the twins to form incoherent boundaries, destroying the coherent relationship between the twin and matrix. Finally, in the nanocrystalline deformation stage, the nanocrystalline structure was further divided into smaller segments to accommodate additional strains through the interaction between dislocations and twins.

16.
Sci Total Environ ; 881: 163405, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044330

RESUMO

Soil metal(loid)s in high geological background areas occur mainly in the residual form with low bioavailability, and whether these potentially toxic elements (PTEs) in agricultural soils are harmful to human health is of considerable public concern. A paired survey using both soil and crop samples was conducted using 437 contaminated sites in east Yunnan province, southwest China. The concentration, distribution, and source of PTEs (arsenic (As), copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and chromium (Cr)) in agricultural soils, and the contamination levels of and potential health risks from PTEs from different pollution sources were evaluated. Soil Pb, Cu, Zn, Cd, Cr, and As concentrations were higher than the Chinese screening values (GB 15618-2018) of 10.98, 36.16, 24.71, 86.96, 14.19, and 6.64 %, respectively, and Cd greatly exceeded the screening values. Spatial distribution maps indicate that areas with high concentrations of Pb, Cu, Cd, and As were located mainly in mining areas. However, the Zn and Cr concentrations were relatively homogeneous and more dependent on natural processes. The source identification of PTEs shows that Zn and Cr in soils were controlled mainly by the geological background, Pb and As were closely related to anthropogenic activities, and Cu and Cd were related to both sources. Different pollution sources affected crop PTE contents, with average concentrations of Zn, Cd, Cr, and As in high geological background areas significantly lower than in anthropogenic activity areas (p < 0.001), while Cu and As did not differ significantly. Although soil PTEs in high geological background areas represent a relatively high potential risk, they had little impact on crop quality. The hazard indices of different crop products for adults and children followed the sequence: cereals > leafy vegetables > rootstalk vegetables > fruit vegetables. Rootstalk and fruit vegetables are recommended to be grown in the study areas because they are safe for human consumption.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Metais Pesados/análise , Solo , Cádmio , Chumbo , Monitoramento Ambiental , Poluentes do Solo/análise , China , Arsênio/análise , Zinco , Verduras , Cromo , Medição de Risco
17.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(4): 407-414, 2023 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-37073847

RESUMO

OBJECTIVES: To study the effect of platelet-derived growth factor-BB (PDGF-BB) on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension (HPH). METHODS: A total of 128 neonatal rats were randomly divided into four groups: PDGF-BB+HPH, HPH, PDGF-BB+normal oxygen, and normal oxygen (n=32 each). The rats in the PDGF-BB+HPH and PDGF-BB+normal oxygen groups were given an injection of 13 µL 6×1010 PFU/mL adenovirus with PDGF-BB genevia the caudal vein. After 24 hours of adenovirus transfection, the rats in the HPH and PDGF-BB+HPH groups were used to establish a neonatal rat model of HPH. Right ventricular systolic pressure (RVSP) was measured on days 3, 7, 14, and 21 of hypoxia. Hematoxylin-eosin staining was used to observe pulmonary vascular morphological changes under an optical microscope, and vascular remodeling parameters (MA% and MT%) were also measured. Immunohistochemistry was used to measure the expression levels of PDGF-BB and proliferating cell nuclear antigen (PCNA) in lung tissue. RESULTS: The rats in the PDGF-BB+HPH and HPH groups had a significantly higher RVSP than those of the same age in the normal oxygen group at each time point (P<0.05). The rats in the PDGF-BB+HPH group showed vascular remodeling on day 3 of hypoxia, while those in the HPH showed vascular remodeling on day 7 of hypoxia. On day 3 of hypoxia, the PDGF-BB+HPH group had significantly higher MA% and MT% than the HPH, PDGF-BB+normal oxygen, and normal oxygen groups (P<0.05). On days 7, 14, and 21 of hypoxia, the PDGF-BB+HPH and HPH groups had significantly higher MA% and MT% than the PDGF-BB+normal oxygen and normal oxygen groups (P<0.05). The PDGF-BB+HPH and HPH groups had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group at all time points (P<0.05). On days 3, 7, and 14 of hypoxia, the PDGF-BB+HPH group had significantly higher expression levels of PDGF-BB and PCNA than the HPH group (P<0.05), while the PDGF-BB+normal oxygen group had significantly higher expression levels of PDGF-BB and PCNA than the normal oxygen group (P<0.05). CONCLUSIONS: Exogenous administration of PDGF-BB in neonatal rats with HPH may upregulate the expression of PCNA, promote pulmonary vascular remodeling, and increase pulmonary artery pressure.


Assuntos
Hipertensão Pulmonar , Ratos , Animais , Becaplermina , Animais Recém-Nascidos , Antígeno Nuclear de Célula em Proliferação , Remodelação Vascular , Artéria Pulmonar/metabolismo , Hipóxia , Oxigênio , Proliferação de Células , Miócitos de Músculo Liso/metabolismo
18.
Stem Cell Res Ther ; 14(1): 107, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101197

RESUMO

Wound healing is a dynamic and highly sequential process involving a series of overlapping spatial and temporal phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal, multidirectional differentiation potential, and paracrine regulation. Exosomes are subcellular vesicular components 30-150 nm in size and are novel carriers of intercellular communication in regulating the biological behaviors of skin cells. Compared to MSCs, MSC-derived exosomes (MSC-exos) possess lower immunogenicity, easy storage, and highly effective biological activity. MSC-exos, mainly derived from adipose-derived stem cells (ADSCs), bone marrow-derived MSCs (BMSCs), human umbilical cord MSCs (hUC-MSCs), and other stem cell types, play a role in shaping the activity of fibroblasts, keratinocytes, immune cells, and endothelial cells in diabetic wounds, inflammatory wound repair, and even wound-related keloid formation. Therefore, this study focuses on the specific roles and mechanisms of different MSC-exos in wound healing, as well as the current limitations and various perspectives. Deciphering the biological properties of MSC-exos is crucial to providing a promising cell-free therapeutic tool for wound healing and cutaneous regeneration.


Assuntos
Células Endoteliais , Exossomos , Humanos , Exossomos/metabolismo , Cicatrização/fisiologia , Pele/lesões , Células-Tronco
19.
J Burn Care Res ; 44(6): 1371-1381, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36913234

RESUMO

Burn wounds require intervention to ensure timely progression to reduce morbidity and mortality. The migrative and proliferative capabilities of keratinocytes are impaired in wounds. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix (ECM), allowing epithelial cells to migrate. As reported, osteopontin can regulate cell migration, cell adhesion, and ECM invasion in endothelial and epithelial cells, and its expression is significantly increased in chronic wounds. Therefore, this study investigates the biological functions of osteopontin and its related mechanisms involved in burn wounds. We established cellular and animal models of burn injury. Levels of osteopontin, RUNX1, MMPs, collagen I, CK19, PCNA, and pathway-associated proteins were measured by RT-qPCR, western blotting, and immunofluorescence staining. Cell viability and migration were examined by CCK-8 and wound scratch assays. Histological changes were analyzed by hematoxylin and eosin staining and Masson's trichrome staining. For in vitro analysis, osteopontin silencing facilitated the growth and migration of HaCaT cells and promoted ECM degradation in HaCaT cells. Mechanistically, RUNX1 bound to osteopontin promoter, and RUNX1 upregulation attenuated the promoting efficacy of osteopontin silencing on cell growth and migration and ECM degradation. Additionally, RUNX1-activated osteopontin inactivated the MAPK signaling pathway. For in vivo analysis, osteopontin depletion facilitated burn wound healing by promoting reepithelialization and ECM degradation. In conclusion, RUNX1 activates the osteopontin expression at the transcriptional level and osteopontin depletion facilitates the recovery of burn wounds by promoting the migration of keratinocytes and reepithelization and ECM degradation by activating the MAPK pathway.


Assuntos
Queimaduras , Animais , Osteopontina/genética , Osteopontina/metabolismo , Regulação para Baixo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cicatrização/fisiologia , Movimento Celular , Metaloproteinases da Matriz/metabolismo
20.
An. bras. dermatol ; 98(1): 17-25, Jan.-Feb. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1429628

RESUMO

Abstract Background Oxidative stress is strongly associated with cellular senescence. Numerous studies have indicated that microRNAs (miRNAs) play a critical part in cellular senescence. MiR-181a was reported to induce cellular senescence, however, the potential mechanism of miR-181a in hydrogen peroxide (H2O2)-induced cellular senescence remains obscure. Objective The aim of this study is to investigate the role and regulatory mechanism of miR-181a in H2O2-induced cellular senescence. Methods Human foreskin fibroblasts (HFF) transfected with miR-181a inhibitor/miR-NC with or without H2O2 treatment were divided into four groups: control + miR-NC/miR-181a inhibitor, H2O2 + miR-NC/miR-181a inhibitor. CCK-8 assay was utilized to evaluate the viability of HFF. RT-qPCR was used to measure the expression of miR-181a and its target genes. Protein levels of protein disulfide isomerase family A member 6 (PDIA6) and senescence markers were assessed by western blotting. Senescence-associated β-galactosidase (SA-β-gal) staining was applied for detecting SA-β-gal activity. The activities of SOD, GPx, and CAT were detected by corresponding assay kits. The binding relation between PDIA6 and miR-181a was identified by luciferase reporter assay. Results MiR-181a inhibition suppressed H2O2-induced oxidative stress and cellular senescence in HFF. PDIA6 was targeted by miR-181a and lowly expressed in H2O2-treated HFF. Knocking down PDIA6 reversed miR-181a inhibition-mediated suppressive impact on H2O2-induced oxidative stress and cellular senescence in HFF. Study limitations Signaling pathways that might be mediated by miR-181a/PDIA6 axis were not investigated. Conclusion Downregulated miR-181a attenuates H2O2-induced oxidative stress and cellular senescence in HFF by targeting PDIA6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA