Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21251, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481702

RESUMO

Skeletal muscle communicates with other organs via myokines, which are secreted by muscle during exercise and exert various effects. Despite much investigation of the exercise, the underlying molecular mechanisms are still not fully understood. Here, we applied an in vitro exercise model in which cultured C2C12 myotubes were subjected to electrical pulse stimulation (EPS), which mimics contracting muscle. Based on the significantly up- and down-regulated genes in EPS, we constructed an in silico model to predict exercise responses at the transcriptional level. The in silico model revealed similarities in the transcriptomes of the EPS and exercised animals. Comparative analysis of the EPS data and exercised mouse muscle identified putative biomarkers in exercise signaling pathways and enabled to discover novel exercise-induced myokines. Biochemical analysis of selected exercise signature genes in muscle from exercised mice showed that EPS mimics in vivo exercise, at least in part, at the transcriptional level. Consequently, we provide a novel myokine, Amphiregulin (AREG), up-regulated both in vitro and in vivo, that would be a potential target for exercise mimetics.


Assuntos
Camundongos , Animais
2.
J Cachexia Sarcopenia Muscle ; 11(5): 1336-1350, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32495509

RESUMO

BACKGROUND: The microRNAs (miRNAs) down-regulated in aged mouse skeletal muscle were mainly clustered within the delta-like homologue 1 and the type III iodothyronine deiodinase (Dlk1-Dio3) genomic region. Although clustered miRNAs are coexpressed and regulate multiple targets in a specific signalling pathway, the function of miRNAs in the Dlk1-Dio3 cluster in muscle aging is largely unknown. We aimed to ascertain whether these miRNAs play a common role to regulate age-related muscle atrophy. METHODS: To examine anti-atrophic effect of miRNAs, we individually transfected 42 miRNA mimics in fully differentiated myotubes and analysed their diameters. The luciferase reporter assay using target 3' untranslated region (UTR) and RNA pull-down assay were employed to ascertain the target predicted by the TargetScan algorithm. To investigate the therapeutic potential of the miRNAs in vivo, we generated adeno-associated virus (AAV) serotype 9 expressing green fluorescent protein (GFP) (AAV9-GFP) bearing miR-376c-3p and infected it into the tibialis anterior muscle of old mice. We performed morphometric analysis and measured ex vivo isometric force using a force transducer. Human gluteus maximus muscle tissues (ages ranging from 25 to 80 years) were used to investigate expression levels of the conserved miRNAs in the Dlk1-Dio3 cluster. RESULTS: We found that the majority of miRNAs (33 out of 42 tested) in the cluster induced anti-atrophic phenotypes in fully differentiated myotubes with increasing their diameters. Eighteen of these miRNAs, eight of which are conserved in humans, harboured predicted binding sites in the 3' UTR of muscle atrophy gene-1 (Atrogin-1) encoding a muscle-specific E3 ligase. Direct interactions were identified between these miRNAs and the 3' UTR of Atrogin-1, leading to repression of Atrogin-1 and thereby induction of eIF3f protein content, in both human and mouse skeletal muscle cells. Intramuscular delivery of AAV9 expressing miR-376c-3p, one of the most effective miRNAs in myotube thickening, dramatically ameliorated skeletal muscle atrophy and improved muscle function, including isometric force, twitch force, and fatigue resistance in old mice. Consistent with our findings in mice, the expression of miRNAs in the cluster was significantly down-regulated in human muscle from individuals > 50 years old. CONCLUSIONS: Our study suggests that genetic intervention using a muscle-directed miRNA delivery system has therapeutic efficacy in preventing Atrogin-1-mediated muscle atrophy in sarcopenia.


Assuntos
MicroRNAs , Animais , Proteínas de Ligação ao Cálcio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Iodeto Peroxidase , Proteínas de Membrana , Camundongos , MicroRNAs/genética , Fibras Musculares Esqueléticas , Atrofia Muscular/genética , Atrofia Muscular/terapia
3.
Cell Signal ; 22(7): 1153-61, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20227493

RESUMO

Among phospholipase C (PLC) isozymes (beta, gamma, delta, epsilon, zeta and eta), PLC-beta plays a key role in G-protein coupled receptor (GPCR)-mediated signaling. PLC-beta subtypes are often overlapped in their distribution, but have unique knock-out phenotypes in organism, suggesting that each subtype may have the different role even within the same type of cells. In this study, we examined the possibility of the differential coupling of each PLC-beta subtype to GPCRs, and explored the molecular mechanism underlying the specificity. Firstly, we found that PLC-beta1 and PLC-beta 3 are activated by bradykinin (BK) or lysophosphatidic acid (LPA), respectively. BK-triggered phosphoinositides hydrolysis and subsequent Ca(2+) mobilization were abolished specifically by PLC-beta1 silencing, whereas LPA-triggered events were by PLC-beta 3 silencing. Secondly, we showed the evidence that PDZ scaffold proteins is a key mediator for the selective coupling between PLC-beta subtype and GPCR. We found PAR-3 mediates physical interaction between PLC-beta1 and BK receptor, while NHERF2 does between PLC-beta 3 and LPA(2) receptor. Consistently, the silencing of PAR-3 or NHERF2 blunted PLC signaling induced by BK or LPA respectively. Taken together, these data suggest that each subtype of PLC-beta is selectively coupled to GPCR via PDZ scaffold proteins in given cell types and plays differential role in the signaling of various GPCRs.


Assuntos
Bradicinina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/metabolismo , Fosfolipase C beta/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Bradicinina/metabolismo , Cálcio/metabolismo , Proteínas de Ciclo Celular/química , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/química , Domínios PDZ , Fosfolipase C beta/antagonistas & inibidores , Fosfolipase C beta/fisiologia , Fosfoproteínas/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA