Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int Immunopharmacol ; 128: 111565, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262161

RESUMO

Activation of NOD-like receptor protein 3 (NLRP3) inflammasome exacerbates liver inflammation and fibrosis in nonalcoholic steatohepatitis (NASH), suggesting that development of inflammasome inhibitor can become leading candidate to ameliorate NASH. Panax ginseng (P. ginseng) contains numerous bioactive natural components to reduce inflammation. This study aims to identify inhibitory components of P. ginseng for NLRP3 inflammasome activation. We separated polar and non-polar fractions of P. ginseng and tested modulation of NLRP3 inflammasome, and then identified pure component for inflammasome inhibitor which ameliorates diet-induced NASH. Non-polar P. ginseng fractions obtained from ethyl acetate solvent attenuated IL-1ß secretion and expression of active caspase-1. We revealed that panaxydol (PND) is pure component to inhibit NLRP3 inflammasome activation. PND blocked inflammasome cytokines release, pyroptotic cell death, caspase-1 activation and specking of inflammasome complex. Inhibitory effect of PND was specific to NLRP3-dependent pathway via potential interaction with ATP binding motif of NLRP3. Moreover, in vivo studies showed that PND plays beneficial roles to reduce tissue inflammations through disruption of NLRP3 inflammasome and to ameliorate the development of NASH. These results provide new insight of natural products, panaxydol, for NLRP3 inflammasome inhibitor and could offer potential therapeutic candidate for reliving NASH.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Di-Inos , Álcoois Graxos , Hepatopatia Gordurosa não Alcoólica , Panax , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Panax/metabolismo , Inflamação , Caspases , Camundongos Endogâmicos C57BL
2.
Cell Metab ; 35(7): 1209-1226.e13, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172577

RESUMO

Liver metastasis is a major cause of death in patients with colorectal cancer (CRC). Fatty liver promotes liver metastasis, but the underlying mechanism remains unclear. We demonstrated that hepatocyte-derived extracellular vesicles (EVs) in fatty liver enhanced the progression of CRC liver metastasis by promoting oncogenic Yes-associated protein (YAP) signaling and an immunosuppressive microenvironment. Fatty liver upregulated Rab27a expression, which facilitated EV production from hepatocytes. In the liver, these EVs transferred YAP signaling-regulating microRNAs to cancer cells to augment YAP activity by suppressing LATS2. Increased YAP activity in CRC liver metastasis with fatty liver promoted cancer cell growth and an immunosuppressive microenvironment by M2 macrophage infiltration through CYR61 production. Patients with CRC liver metastasis and fatty liver had elevated nuclear YAP expression, CYR61 expression, and M2 macrophage infiltration. Our data indicate that fatty liver-induced EV-microRNAs, YAP signaling, and an immunosuppressive microenvironment promote the growth of CRC liver metastasis.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Fígado Gorduroso , Neoplasias Hepáticas , MicroRNAs , Humanos , Microambiente Tumoral , Fígado Gorduroso/metabolismo , MicroRNAs/metabolismo , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Exp Mol Med ; 55(2): 401-412, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759578

RESUMO

Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. In the current study, we used ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, but its deficiency induces goblet cell apoptosis under inflammatory conditions. Treatment of ERdj5-knockout mice with the chemical chaperone ursodeoxycholic acid ameliorated severe colitis by reducing endoplasmic reticulum stress. These findings highlight the important role of ERdj5 in preserving goblet cell viability and function by resolving endoplasmic reticulum stress.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Proteínas de Choque Térmico HSP40/metabolismo , Dobramento de Proteína , Células Caliciformes/metabolismo , Inflamação , Camundongos Knockout , Estresse do Retículo Endoplasmático , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Apoptose , Chaperonas Moleculares/metabolismo
4.
Immunol Cell Biol ; 101(3): 216-230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36529983

RESUMO

Liver cirrhosis is characterized by the extensive deposition of extracellular matrix such as fibril collagen, causing dysfunction and failure of the liver. Hepatic macrophages play pivotal roles in the transition from inflammatory to restorative properties upon hepatic injury. In particular, scar-associated macrophages (SAMacs) control liver fibrosis with the representative expression of matrix metalloproteinase (MMP). However, the heterogenic SAMac population has not been well characterized yet. This study profiled heterogeneous liver macrophages using public databases of single-cell transcriptomics and found T-cell immunoglobulin and mucin containing (TIM)4- macrophages exhibited elevated expression of MMPs. Scar-associated triggering receptor expressed on myeloid cells (TREM)2 was positively correlated with MMP expression, suggesting that TREM2+ subsets exert their fibrotic role via MMPs. During the progression of diet-induced nonalcoholic steatohepatitis and drug-induced liver cirrhosis, monocyte-derived TREM2+ macrophages accumulate in the liver with the distinct expression of MMPs. A noticeable expansion of MMP- and TREM2- double positive macrophages was observed in fibrotic scar regions. Consistently, the analysis of single-cell transcriptomics for human cirrhotic livers supported the theory that TREM2+ SAMacs are strongly associated with MMPs. The results could expand the understanding of liver fibrosis and SAMac, offering potential therapeutic approaches for liver cirrhosis.


Assuntos
Cicatriz , Fígado , Humanos , Cicatriz/metabolismo , Cicatriz/patologia , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/metabolismo , Metaloproteinases da Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
5.
Exp Mol Med ; 54(6): 739-752, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662287

RESUMO

Liver fibrosis occurs during wound healing after repeated liver injury and is characterized by extensive extracellular matrix deposition. We previously identified hyaluronan synthase 2 (HAS2) as a driver of liver fibrosis and hepatic stellate cell (HSC) activation. Developing strategies to suppress HSC activation is key to alleviating liver fibrosis, and HAS2 is an attractive candidate for intervention. To gain insight into the molecular function of HAS2, we investigated its posttranscriptional regulation. We found that miR-200c directly targets the 3' untranslated regions of HAS2. Moreover, miR-200c and HAS2 were inversely expressed in fibrotic human and mouse livers. After establishing the direct interaction between miR-200c and HAS2, we investigated the functional outcome of regulating HAS2 expression in three murine models: CCl4-induced acute liver injury, CCl4-induced chronic liver fibrosis, and bile duct ligation-induced liver fibrosis. Hepatic Has2 expression was induced by acute and chronic CCl4 treatment. In contrast, miR-200c expression was decreased after CCl4 treatment. HSC-specific Has2 deletion reduced the expression of inflammatory markers and infiltration of macrophages in the models. Importantly, hyaluronidase-2 (HYAL2) but not HYAL1 was overexpressed in fibrotic human and murine livers. HYAL2 is an enzyme that can cleave the extracellular matrix component hyaluronan. We found that low-molecular-weight hyaluronan stimulated the expression of inflammatory genes. Treatment with the HA synthesis inhibitor 4-methylumbelliferone alleviated bile duct ligation-induced expression of these inflammatory markers. Collectively, our results suggest that HAS2 is negatively regulated by miR-200c and contributes to the development of acute liver injury and chronic liver inflammation via hyaluronan-mediated immune signaling.


Assuntos
Hialuronan Sintases , Cirrose Hepática , MicroRNAs , Animais , Tetracloreto de Carbono/efeitos adversos , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Fibrose , Células Estreladas do Fígado/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/efeitos adversos , Ácido Hialurônico/metabolismo , Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Immune Netw ; 22(2): e19, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35573153

RESUMO

Coxsackievirus B3 (CVB3) infection causes acute pancreatitis and myocarditis. However, its pathophysiological mechanism is unclear. Here, we investigated how lipid metabolism is associated with exacerbation of CVB3 pathology using high-fat diet (HFD)-induced obese mice. Mice were intraperitoneally inoculated with 1×106 pfu/mouse of CVB3 after being fed a control or HFD to induce obesity. Mice were treated with mitoquinone (MitoQ) to reduce the level of mitochondrial ROS (mtROS). In obese mice, lipotoxicity of white adipose tissue-induced inflammation caused increased replication of CVB3 and mortality. The coxsackievirus adenovirus receptor increased under obese conditions, facilitating CVB3 replication in vitro. However, lipid-treated cells with receptor-specific inhibitors did not reduce CVB3 replication. In addition, lipid treatment increased mitochondria-derived vesicle formation and the number of multivesicular bodies. Alternatively, we found that inhibition of lipid-induced mtROS decreased viral replication. Notably, HFD-fed mice were more susceptible to CVB3-induced mortality in association with increased levels of CVB3 replication in adipose tissue, which was ameliorated by administration of the mtROS inhibitor, MitoQ. These results suggest that mtROS inhibitors can be used as potential treatments for CVB3 infection.

7.
Free Radic Biol Med ; 184: 42-52, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390453

RESUMO

Alcoholic liver disease is the major cause of chronic liver diseases. Excessive alcohol intake results in endoplasmic reticulum (ER) stress. ERdj5, a member of DNAJ family, is an ER-resident chaperone protein, whose role in alcoholic liver disease remains to be investigated. In this study, we aim to address the effect of ERdj5 on alcoholic liver disease and the underlying mechanism. Hepatic Dnajc10 (ERdj5) mRNA expression was elevated in both human and mouse alcoholic hepatitis. In mice subjected to chronic and binge ethanol feeding, ERdj5 levels were also markedly increased. Hepatic Dnajc10 correlated with Xbp1s mRNA. Tunicamycin, an ER stress inducer, increased ERdj5 levels. Dnajc10 knockout mice exhibited exacerbated alcohol-induced liver injury and hepatic steatosis. However, the macrophage numbers and chemokine levels were similar to those in wild-type mice. Depletion of Dnajc10 promoted oxidative stress. Ethanol feeding increased hepatic H2O2 levels, and these were further increased in Dnajc10 knockout mice. Additionally, Dnajc10-deficient hepatocytes produced large amounts of reactive oxygen species. Notably, Nrf2, a central regulator of oxidative stress, was decreased by depletion of Dnajc10 in the nuclear fraction of ethanol-treated mouse liver. Consistently, liver tissues from ethanol-fed Dnajc10 knockout mice had reduced expression of downstream antioxidant genes. Furthermore, hepatic glutathione content in the liver of knockout mice declined compared to wild-type mice. In conclusion, our results demonstrate that ethanol-induced ERdj5 may regulate the Nrf2 pathway and glutathione contents, and have protective effects on liver damage and alcohol-mediated oxidative stress in mice. These suggest that ERdj5 has the potential to protect against alcoholic liver disease.


Assuntos
Proteínas de Choque Térmico HSP40 , Hepatopatias Alcoólicas , Chaperonas Moleculares , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Etanol/toxicidade , Glutationa/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054960

RESUMO

Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Hepatite/complicações , Hepatite/metabolismo , Estresse Oxidativo , Transdução de Sinais , Animais , Suscetibilidade a Doenças/imunologia , Etanol/efeitos adversos , Etanol/metabolismo , Fígado Gorduroso/complicações , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso Alcoólico/patologia , Regulação da Expressão Gênica , Hepatite/etiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Imunidade Inata , Redes e Vias Metabólicas , MicroRNAs/genética , Oxirredução
9.
Biomedicines ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944728

RESUMO

The liver plays a key role in maintaining energy homeostasis by sensing and responding to changes in nutrient status under various metabolic conditions. Recently highlighted as a major endocrine organ, the contribution of the liver to systemic glucose and lipid metabolism is primarily attributed to signaling crosstalk between multiple organs via hepatic hormones, cytokines, and hepatokines. Hepatokines are hormone-like proteins secreted by hepatocytes, and a number of these have been associated with extra-hepatic metabolic regulation. Mounting evidence has revealed that the secretory profiles of hepatokines are significantly altered in non-alcoholic fatty liver disease (NAFLD), the most common hepatic manifestation, which frequently precedes other metabolic disorders, including insulin resistance and type 2 diabetes. Therefore, deciphering the mechanism of hepatokine-mediated inter-organ communication is essential for understanding the complex metabolic network between tissues, as well as for the identification of novel diagnostic and/or therapeutic targets in metabolic disease. In this review, we describe the hepatokine-driven inter-organ crosstalk in the context of liver pathophysiology, with a particular focus on NAFLD progression. Moreover, we summarize key hepatokines and their molecular mechanisms of metabolic control in non-hepatic tissues, discussing their potential as novel biomarkers and therapeutic targets in the treatment of metabolic diseases.

10.
Arch Pharm Res ; 44(6): 574-587, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34165701

RESUMO

The liver is a vital organ responsible for various physiological functions, such as metabolism, immune response, digestion, and detoxification. Crosstalk between hepatocytes, hepatic macrophages, and hepatic stellate cells is critical for liver pathology. Exosomes are small extracellular vesicles (50-150 nm) that play an important role in cell-cell or organ-organ communication as they transfer their cargo, such as protein, DNA, and RNA to recipient cells or distant organs. In various liver diseases, the number of liver cell-derived exosomes is increased and the exosomal microRNA (miRNA) profile is altered. Early studies investigated the value of circulating exosomal miRNAs as biomarkers. Several exosomal miRNAs showed excellent diagnostic values, suggesting their potential as diagnostic biomarkers in liver diseases. Exosomal miRNAs have emerged as critical regulators of liver pathology because they control the expression of multiple genes in recipient cells. In this review, we discuss the biology of exosomes and summarize the recent findings of exosome-mediated intercellular and organ-to-organ communication during liver pathology. As there are many review articles dealing with exosomal miRNAs in liver cancer, we focused on non-malignant liver diseases. The therapeutic potential of exosomal miRNAs in liver pathology is also highlighted.


Assuntos
Exossomos/metabolismo , Hepatopatias/diagnóstico , Hepatopatias/metabolismo , MicroRNAs/metabolismo , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Comunicação Celular/fisiologia , Exossomos/genética , Células Estreladas do Fígado/metabolismo , Humanos , Hepatopatias/genética , MicroRNAs/genética , Prognóstico
11.
Cell Metab ; 33(2): 229-230, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33535096

RESUMO

Endoplasmic reticulum (ER) stress is essential in the development of obesity, insulin resistance, and hepatosteatosis. In the latest issue of Cell Metabolism, Tirosh et al. (2020) demonstrate that intracellular ER stress can be transmitted to neighboring hepatocytes via connexin 43, thus propagating ER stress and promoting hepatosteatosis and insulin resistance.


Assuntos
Estresse do Retículo Endoplasmático , Resistência à Insulina , Conexina 43 , Humanos , Fígado , Obesidade
12.
Arch Pharm Res ; 44(2): 230-240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33486695

RESUMO

Hyaluronan (HA) as a glycosaminoglycan can bind to cell-surface receptors, such as TLR4, to regulate inflammation, tissue injury, repair, and fibrosis. 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, is a drug used for the treatment of biliary spasms. Currently, therapeutic interventions are not available for non-alcoholic steatohepatitis (NASH). In this study, we investigated the effects of 4-MU on NASH using a choline-deficient amino acid (CDAA) diet model. CDAA diet-fed mice showed NASH characteristics, including hepatocyte injury, hepatic steatosis, inflammation, and fibrogenesis. 4-MU treatment significantly reduced hepatic lipid contents in CDAA diet-fed mice. 4-MU reversed CDAA diet-mediated inhibition of Ppara and induction of Srebf1 and Slc27a2. Analysis of serum ALT and AST levels revealed that 4-MU treatment protected against hepatocellular damage induced by CDAA diet feeding. TLR4 regulates low molecular weight-HA-induced chemokine expression in hepatocytes. In CDAA diet-fed, 4-MU-treated mice, the upregulated chemokine/cytokine expression, such as Cxcl1, Cxcl2, and Tnf was attenuated with the decrease of macrophage infiltration into the liver. Moreover, HA inhibition repressed CDAA diet-induced mRNA expression of fibrogenic genes, Notch1, and Hes1 in the liver. In conclusion, 4-MU treatment inhibited liver steatosis and steatohepatitis in a mouse model of NASH, implicating that 4-MU may have therapeutic potential for NASH.


Assuntos
Deficiência de Colina/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Ácido Hialurônico/biossíntese , Himecromona/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Aminoácidos/administração & dosagem , Aminoácidos/deficiência , Animais , Colina/administração & dosagem , Deficiência de Colina/induzido quimicamente , Deficiência de Colina/complicações , Himecromona/farmacologia , Indicadores e Reagentes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia
13.
Exp Mol Med ; 52(6): 896-910, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32576930

RESUMO

As the key governors of diverse physiological processes, G protein-coupled receptors (GPCRs) have drawn attention as primary targets for several diseases, including diabetes and cardiovascular disease. Heterotrimeric G proteins converge signals from ~800 members of the GPCR family. Among the members of the G protein α family, the Gα12 family members comprising Gα12 and Gα13 have been referred to as gep oncogenes. Gα12/13 levels are altered in metabolic organs, including the liver and muscles, in metabolic diseases. The roles of Gα12/13 in metabolic diseases have been investigated. In this review, we highlight findings demonstrating Gα12/13 amplifying or dampening regulators of phenotype changes. We discuss the molecular basis of G protein biology in the context of posttranslational modifications to heterotrimeric G proteins and the cell signaling axis. We also highlight findings providing insights into the organ-specific, metabolic and pathological roles of G proteins in changes associated with specific cells, energy homeostasis, glucose metabolism, liver fibrosis and the immune and cardiovascular systems. This review summarizes the currently available knowledge on the importance of Gα12/13 in the physiology and pathogenesis of metabolic diseases, which is presented according to the basic understanding of their metabolic actions and underlying cellular and molecular bases.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Doenças Metabólicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Humanos , Doenças Metabólicas/genética , Receptores Acoplados a Proteínas G/genética
14.
Sci Transl Med ; 11(496)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31189722

RESUMO

Hyaluronan (HA), a major extracellular matrix glycosaminoglycan, is a biomarker for cirrhosis. However, little is known about the regulatory and downstream mechanisms of HA overproduction in liver fibrosis. Hepatic HA and HA synthase 2 (HAS2) expression was elevated in both human and murine liver fibrosis. HA production and liver fibrosis were reduced in mice lacking HAS2 in hepatic stellate cells (HSCs), whereas mice overexpressing HAS2 had exacerbated liver fibrosis. HAS2 was transcriptionally up-regulated by transforming growth factor-ß through Wilms tumor 1 to promote fibrogenic, proliferative, and invasive properties of HSCs via CD44, Toll-like receptor 4 (TLR4), and newly identified downstream effector Notch1. Inhibition of HA synthesis by 4-methylumbelliferone reduced HSC activation and liver fibrosis in mice. Our study provides evidence that HAS2 actively synthesizes HA in HSCs and that it promotes HSC activation and liver fibrosis through Notch1. Targeted HA inhibition may have potential to be an effective therapy for liver fibrosis.


Assuntos
Células Estreladas do Fígado/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Cirrose Hepática/metabolismo , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Himecromona/farmacologia , RNA-Seq , Receptor 4 Toll-Like/metabolismo
15.
Hepatology ; 70(5): 1582-1599, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31044438

RESUMO

Nonalcoholic fatty liver disease (NAFLD) enhances the growth and recurrence of colorectal cancer (CRC) liver metastasis. With the rising prevalence of NAFLD, a better understanding of the molecular mechanism underlying NAFLD-associated liver metastasis is crucial. Tumor-associated macrophages (TAMs) constitute a large portion of the tumor microenvironment that promotes tumor growth. NOD-like receptor C4 (NLRC4), a component of an inflammasome complex, plays a role in macrophage activation and interleukin (IL)-1ß processing. We aimed to investigate whether NLRC4-mediated TAM polarization contributes to metastatic liver tumor growth in NAFLD. Wild-type and NLRC4-/- mice were fed low-fat or high-fat diet for 6 weeks followed by splenic injection of mouse CRC MC38 cells. The tumors were analyzed 2 weeks after CRC cell injection. High-fat diet-induced NAFLD significantly increased the number and size of CRC liver metastasis. TAMs and CD206-expressing M2 macrophages accumulated markedly in tumors in the presence of NAFLD. NAFLD up-regulated the expression of IL-1ß, NLRC4, and M2 markers in tumors. In NAFLD, but not normal livers, deletion of NLRC4 decreased liver tumor growth accompanied by decreased M2 TAMs and IL-1ß expression in tumors. Wild-type mice showed increased vascularity and vascular endothelial growth factor (VEGF) expression in tumors with NAFLD, but these were reduced in NLRC4-/- mice. When IL-1 signaling was blocked by recombinant IL-1 receptor antagonist, liver tumor formation and M2-type macrophages were reduced, suggesting that IL-1 signaling contributes to M2 polarization and tumor growth in NAFLD. Finally, we found that TAMs, but not liver macrophages, produced more IL-1ß and VEGF following palmitate challenge. Conclusion: In NAFLD, NLRC4 contributes to M2 polarization, IL-1ß, and VEGF production in TAMs, which promote metastatic liver tumor growth.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Neoplasias do Colo/patologia , Inflamassomos/fisiologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/secundário , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Feminino , Interleucina-1beta/fisiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL
16.
Semin Liver Dis ; 39(1): 26-42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30809789

RESUMO

Hepatocellular carcinoma (HCC) is associated with chronic inflammation and fibrosis arising from different etiologies, including hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases. The inflammatory cytokines tumor necrosis factor-α and interleukin-6 and their downstream targets nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 drive inflammation-associated HCC. Further, while adaptive immunity promotes immune surveillance to eradicate early HCC, adaptive immune cells, such as CD8+ T cells, Th17 cells, and B cells, can also stimulate HCC development. Thus, the role of the hepatic immune system in HCC development is a highly complex topic. This review highlights the role of cytokine signals, NF-κB, JNK, innate and adaptive immunity, and hepatic stellate cells in HCC and discusses whether these pathways could be therapeutic targets. The authors will also discuss cholangiocarcinoma and liver metastasis because biliary inflammation and tumor-associated stroma are essential for cholangiocarcinoma development and because primary tumor-derived inflammatory mediators promote the formation of a "premetastasis niche" in the liver.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Apoptose , Carcinogênese , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/imunologia , Feminino , Células Estreladas do Fígado/metabolismo , Hepatite Viral Humana/complicações , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Cirrose Hepática Alcoólica/complicações , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Masculino , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Distribuição por Sexo , Fator de Necrose Tumoral alfa/metabolismo
17.
Cell Death Dis ; 10(2): 120, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741922

RESUMO

PD901, a MEK inhibitor, has been demonstrated of therapeutic efficacy against cholangiocarcinoma (CCA) harboring K-Ras oncogenic mutations. However, most CCA exhibit no K-Ras mutations. In the current study, we investigated the therapeutic potential of PD901, either alone or in combination with the pan-mTOR inhibitor MLN0128, for the treatment of K-Ras wild-type CCA in vitro using human CCA cell lines, and in vivo using AKT/YapS127A CCA mouse model. We discovered that in vitro, PD901 treatment strongly inhibited CCA cell proliferation, and combined PD901 and MLN0128 therapy further increased growth inhibition. In vivo, treatment of PD901 alone triggered tumor regression, which was not further increased when the two drugs were administered simultaneously. Mechanistically, PD901 efficiently hampered ERK activation in vitro and in vivo, leading to strong inhibition of CCA tumor cell cycle progression. Intriguingly, we discovered that PD901, but not MLN0128 treatment resulted in changes affecting the vasculature and cancer-associated fibroblasts in AKT/YapS127A mouse lesions. It led to the decreased hypoxia within tumor lesions, which may further enhance the anti-cell proliferation activities of PD901. Altogether, our study demonstrates that MEK inhibitors could be effective for the treatment of K-Ras wild-type CCA via inhibiting cell proliferation and modulating tumor microenvironment.


Assuntos
Proliferação de Células/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Benzoxazóis/farmacologia , Benzoxazóis/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Fígado/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
18.
J Clin Invest ; 128(12): 5587-5602, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30300140

RESUMO

Nonalcoholic fatty liver disease (NAFLD) arises from mitochondrial dysfunction under sustained imbalance between energy intake and expenditure, but the underlying mechanisms controlling mitochondrial respiration have not been entirely understood. Heterotrimeric G proteins converge with activated GPCRs to modulate cell-signaling pathways to maintain metabolic homeostasis. Here, we investigated the regulatory role of G protein α12 (Gα12) on hepatic lipid metabolism and whole-body energy expenditure in mice. Fasting increased Gα12 levels in mouse liver. Gα12 ablation markedly augmented fasting-induced hepatic fat accumulation. cDNA microarray analysis from Gna12-KO liver revealed that the Gα12-signaling pathway regulated sirtuin 1 (SIRT1) and PPARα, which are responsible for mitochondrial respiration. Defective induction of SIRT1 upon fasting was observed in the liver of Gna12-KO mice, which was reversed by lentivirus-mediated Gα12 overexpression in hepatocytes. Mechanistically, Gα12 stabilized SIRT1 protein through transcriptional induction of ubiquitin-specific peptidase 22 (USP22) via HIF-1α increase. Gα12 levels were markedly diminished in liver biopsies from NAFLD patients. Consistently, Gna12-KO mice fed a high-fat diet displayed greater susceptibility to diet-induced liver steatosis and obesity due to decrease in energy expenditure. Our results demonstrate that Gα12 regulates SIRT1-dependent mitochondrial respiration through HIF-1α-dependent USP22 induction, identifying Gα12 as an upstream molecule that contributes to the regulation of mitochondrial energy expenditure.


Assuntos
Endopeptidases/metabolismo , Fígado Gorduroso/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias Hepáticas/metabolismo , Obesidade/metabolismo , Consumo de Oxigênio , Transdução de Sinais , Sirtuína 1/metabolismo , Animais , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Endopeptidases/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Sirtuína 1/genética , Ubiquitina Tiolesterase
19.
Artigo em Inglês | MEDLINE | ID: mdl-30083132

RESUMO

Background and Aims: Hepatocyte growth factor (HGF) is a multifunctional pleiotropic protein involved in tissue regeneration, protection, angiogenesis, anti-inflammatory and anti-fibrotic responses, and tumorigenesis, through binding to its receptor MET. Recombinant HGF protein has been shown to mitigate various liver disease models, such as alcohol-induced liver injury, hepatic ischemia-reperfusion injury, and fibrosis. This study aimed to investigate the anti-inflammatory, anti-fibrotic, and anti-lipogenic effects of exogenous administration of feline HGF on a non-alcoholic steatohepatitis (NASH) mouse model. Methods: Wild-type C57BL/6 mice were fed a choline-deficient amino acid defined (CDAA) diet for 3 weeks to create the mouse model of NASH, which displays hepatic steatosis, inflammation, injury, and very mild fibrosis. One mg/kg of recombinant feline HGF was administered intravenously daily in the last 7 days of the total 3 weeks of CDAA diet feeding. Then, hepatic steatosis, inflammation, injury, and fibrogenic gene expression was examined. Results: After 3 weeks of a CDAA diet-feeding, the vehicle-treated mice exhibited evident deposition of lipid droplets in hepatocytes, inflammatory cell infiltration, and hepatocyte ballooning along with increased serum ALT levels whereas recombinant HGF-treated mice showed reduced hepatic steatosis, inflammation, and ballooned hepatocytes with a reduction of serum ALT levels. Recombinant HGF administration promoted hepatocyte proliferation. Increased hepatic lipid accumulation was accompanied by elevated expression of lipogenesis genes Fasn and Dgat1 in vehicle-treated mice. In HGF-treated mice, these genes were reduced with a decrease of lipid accumulation in the liver. Consistent with the anti-inflammatory property of HGF, augmented macrophage infiltration and upregulation of chemokines, Cxcl1, Ccl2, and Ccl5 in the CDAA diet fed mice, were suppressed by the addition of the HGF treatment. Finally, we examined the fibrotic response. The vehicle-treated mice had mild fibrosis with upregulation of Col1a1, Acta2, Timp1, Tgfb1, and Serpine1 expression. Recombinant HGF treatment significantly suppressed fibrogenic gene expression and collagen deposition in the liver. Conclusion: Recombinant feline HGF treatment suppressed the progression of NASH in a CDAA diet feeding mouse model.This suggests that recombinant HGF protein has therapeutic potential for NASH.

20.
Int J Cancer ; 142(1): 81-91, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875549

RESUMO

Hepatocyte death is associated with liver inflammation, fibrosis and hepatocellular carcinoma (HCC). Damaged cells trigger inflammation through activation of Toll-like receptors (TLRs). Although the role of TLR4 in HCC development has been reported, the role of TLR9 in the development of HCC remains elusive. To investigate the role of TLR4 and TLR9 signaling in liver inflammation-fibrosis-cancer axis, we took advantage of mice with hepatic deletion of transforming growth factor-ß-activated kinase 1 (Tak1ΔHep) that develop spontaneous liver injury, inflammation, fibrosis, and HCC, recapitulating the pathology of human HCC. We generated double knockout mice lacking genes of our interest with hepatic Tak1. Tak1ΔHep mice and Tlr4-deficient Tak1ΔHep mice had similar serum ALT levels, but Tlr4-deficient Tak1ΔHep mice exhibited significantly reduced macrophage infiltration, myofibroblast activation and tumor formation. Ablation of TLR9 reduced spontaneous liver injury, inflammation, fibrosis, and cancer development in Tak1ΔHep mice. In addition, the common adaptor, myeloid differentiation factor 88 (MyD88)-deficient Tak1ΔHep mice also attenuated liver injury, macrophage recruitment, collagen deposition, and tumor growth compared with control Tak1ΔHep mice. Genetic ablation of TNF receptor type I (TNFR) in Tak1ΔHep mice remarkably reduced liver inflammation-fibrosis-cancer axis. Surprisingly, disruption of interleukin-1 receptor (IL-1R) had no effect on liver injury and tumor formation, although Il1r-deficient Tak1ΔHep showed attenuated macrophage infiltration and collagen deposition. In conclusion, TLR4- and TLR9-MyD88 are driving forces of progression to HCC accompanied by liver inflammation and fibrosis in Tak1ΔHep mice. Importantly, TLR4 and TLR9 downstream TNFR, but not IL-1R signaling is crucial for the development of HCC in Tak1ΔHep mice.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Hepatócitos/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , MAP Quinase Quinase Quinases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA