Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Sci Rep ; 14(1): 11584, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773245

RESUMO

Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 µg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Penaeidae/microbiologia , Penaeidae/crescimento & desenvolvimento , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio parahaemolyticus/patogenicidade , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrioses/microbiologia , Lactobacillus/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Vibrio/efeitos dos fármacos , Vibrio/patogenicidade , Probióticos
3.
Nat Prod Rep ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284321

RESUMO

Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.

4.
Bioengineering (Basel) ; 10(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978737

RESUMO

Gut microbiota play a key role in health maintenance and disease pathogenesis in animals. Dietary phytochemicals are crucial factors shaping gut bacteria. Here, we investigated the function and mechanism of a phytogenic formulation, EUBIO-BPSG (BP), in laying hens. We found that BP dose-dependently improved health and egg production in 54-week-old hens. Furthermore, BP was correlated with increased fecal Lactobacillus, decreased Escherichia coli and Salmonella enterica, and reduced antibiotic resistance (AR) and antibiotic resistance genes (ARG) in chicken stools. The 16S rDNA data showed that BP increased seven genera of probiotics and reduced 13 genera of pathogens in chicken feces. In vitro co-culture experiments showed that BP at 4 µg/mL and above promoted growth of L. reuteri while large 100- and 200-fold higher doses suppressed growth of E. coli and S. enterica, respectively. Mechanistic studies indicated that L. reuteri and its supernatants antagonized growth of E. coli and S. enterica but not vice-versa. Five short-chain fatty acids and derivatives (SCFA) produced from L. reuteri directly killed both pathogens via membrane destruction. Furthermore, BP inhibited conjugation and recombination of ARG via interference with conjugation machinery and integrase activity in E. coli. Collectively, this work suggests that BP promotes host health and reproductive performance in laying hens through regulation of gut microbiota through increasing probiotics and decreasing pathogens and spreading ARG.

5.
Metabolites ; 13(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984865

RESUMO

Beauveria bassiana is a globally distributed entomopathogenic fungus that produces various secondary metabolites to support its pathogenesis in insects. Two polyketide synthase genes, pks14 and pks15, are highly conserved in entomopathogenic fungi and are important for insect virulence. However, understanding of their mechanisms in insect pathogenicity is still limited. Here, we overexpressed these two genes in B. bassiana and compared the metabolite profiles of pks14 and pks15 overexpression strains to those of their respective knockout strains in culture and in vivo using tandem liquid chromatography-mass spectrometry (LC-MS/MS) with Global Natural Products Social Molecular Networking (GNPS). The pks14 and pks15 clusters exhibited crosstalk with biosynthetic clusters encoding insect-virulent metabolites, including beauvericins, bassianolide, enniatin A, and the intracellular siderophore ferricrocin under certain conditions. These secondary metabolites were upregulated in the pks14-overexpressing strain in culture and the pks15-overexpressing strain in vivo. These data suggest that pks14 and pks15, their proteins or their cluster components might be directly or indirectly associated with key pathways in insect pathogenesis of B. bassiana, particularly those related to secondary metabolism. Information about interactions between the polyketide clusters and other biosynthetic clusters improves scientific understanding about crosstalk among biosynthetic pathways and mechanisms of pathogenesis.

6.
Front Plant Sci ; 13: 998707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388520

RESUMO

Potato common scab, which is mainly caused by the bacterium Streptomyces scabies, occurs in key potato growing regions worldwide. It causes necrotic or corky symptoms on potato tubers and decreases the economic value of potato. At present, there is no recommended chemical or biological control for combating potato common scab in Taiwan. It can only reduce the occurrence by cultivation control, but the efficacy is limited. Previously we found that Bacillus amyloliquefaciens Ba01 could control potato common scab in pot assay and in the field. The potential anti-S. scabies mechanism was associated with surfactin secretion, but further molecular dissection was not conducted. Thus, in this study we aimed to determine whether surfactin is the main compound active against S. scabies by knocking out the srf gene cluster in Ba01. The cloning plasmid pRY1 was transformed to Ba01 by electroporation for in-frame deletion. Two independent Δsrf mutants were obtained and confirmed by specific primers and mass spectrometry. The swarming ability and S. scabies inhibition was significantly decreased (P<0.001) in Δsrf mutants. The swarming ability of Δsrf mutants could be restored by the addition of surfactin. Furthermore, we found that Ba01 formed wrinkled biofilm in MSgg liquid medium, while Δsrf mutants formed biofilm abnormally. Furthermore, the α-amylase, protease and phosphate-solubilizing ability of Δsrf mutants was decreased, and the mutants could not inhibit the growth and sporulation of S. scabies on potato tuber slices. In conclusion, srf gene cluster of B. amyloliquefaciens Ba01 is responsible for the secretion of surfactin and inhibition of S. scabies.

7.
Insects ; 13(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36005340

RESUMO

Nosema ceranae is one of the fungal parasites of Apis mellifera. It causes physical and behavioral effects in honey bees. However, only a few studies have reported on gene expression profiling during A. mellifera infection. In this study, the transcriptome profile of mature spores at each time point of infection (5, 10, and 20 days post-infection, d.p.i.) were investigated. Based on the transcriptome and expression profile analysis, a total of 878, 952, and 981 differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified in N. ceranae spores (NcSp) at 5 d.p.i., 10 d.p.i., and 20 d.p.i., respectively. Moreover, 70 upregulated genes and 340 downregulated genes among common DEGs (so-called common DEGs) and 166 stage-specific genes at each stage of infection were identified. The Gene Ontology (GO) analysis indicated that the DEGs and corresponding common DEGs are involved in the functions of cytosol (GO:0005829), cytoplasm (GO:0005737), and ATP binding (GO:0005524). Furthermore, the pathway analysis found that the DEGs and common DEGs are involved in metabolism, environmental information processing, and organismal systems. Four upregulated common DEGs with higher fold-change values, highly associated with spore proteins and transcription factors, were selected for validation. In addition, the stage-specific genes are highly involved in the mechanism of pre-mRNA splicing according to GO enrichment analysis; thus, three of them showed high expression at each d.p.i. and were also subjected to validation. The relative gene expression levels showed a similar tendency as the transcriptome predictions at different d.p.i., revealing that the gene expression of N. ceranae during infection may be related to the mechanism of gene transcription, protein synthesis, and structural proteins. Our data suggest that the gene expression profiling of N. ceranae at the transcriptomic level could be a reference for the monitoring of nosemosis at the genetic level.

8.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889335

RESUMO

The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.


Assuntos
Alcaloides , Evodia , Quinolonas , Alcaloides/análise , Alcaloides/farmacologia , Cromatografia Líquida , Evodia/química , Frutas/química , Humanos , Alcaloides Indólicos/análise , Alcaloides Indólicos/farmacologia , Extratos Vegetais/química , Quinolonas/análise , Espectrometria de Massas em Tandem
9.
Nat Prod Rep ; 39(11): 2008-2029, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-35822627

RESUMO

Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.


Assuntos
Policetídeos , Animais , Policetídeos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Virulência/genética , Genômica , Insetos/microbiologia , Bactérias/metabolismo
10.
Methods Mol Biol ; 2505: 45-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732935

RESUMO

The surface-assisted laser desorption/ionization (SALDI) technique uses inorganic materials to aid desorption and ionization of molecules. SALDI is suitable for analyzing small molecules due to the absence of interfering signals in the low m/z range originating from the organic matrix. Imaging mass spectrometry (IMS) is a versatile imaging approach with high spatial resolution for analyzing various molecular species, but its application depends heavily on the ionization method. We have developed a functionalized titanium dioxide (TiO2) nanowire as a solid substrate for SALDI-MS detection of low-molecular-weight molecules. We apply this novel substrate for imprinting fragile specimens such as petals and further SALDI-IMS analysis. The TiO2 nanowire substrate is prepared from a commercial Ti plate by a hydrothermal process and subsequently chemically modified to improve the quality and selectivity of imprinting as well as the sensitivity of SALDI-IMS analysis. Here, the functionalized TiO2 nanowire substrate is applied to visualize the distribution of vinca alkaloids in the petal of Madagascar periwinkle (Catharanthus roseus).


Assuntos
Catharanthus , Alcaloides de Vinca , Diagnóstico por Imagem/métodos , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Commun Biol ; 5(1): 454, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551233

RESUMO

Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents.


Assuntos
Acetil-CoA C-Acetiltransferase , Antifúngicos , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Antifúngicos/farmacologia , Bactérias/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Poli-Inos/metabolismo , Poli-Inos/farmacologia
12.
J Hazard Mater ; 434: 128870, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452977

RESUMO

Phytoextraction is a cost-effective and eco-friendly technology to remove arsenic (As) from contaminated soil using plants and associated microorganisms. Pteris vittata is the most studied As hyperaccumulator, which effectively takes up inorganic arsenate via roots. Arsenic solubilization and speciation occur prior to plant absorption in the rhizosphere, which play a key role in As phytoextraction by P. vittata. This study investigated the metabolomic correlation of P. vittata and associated rhizospheric microorganisms during As phytoextraction. Three-month pot cultivation of P. vittata in As polluted soil was conducted. In rhizosphere, an increase of water-soluble As concentration and a decrease of pH was observed in the second month, suggesting acidic metabolites as a possible cause of As solubilization. A correlation network was built to elucidate the interactions among metabolites, bacteria and fungi in the rhizosphere of P. vittata. Our results demonstrate that the plant is the major driving force of rhizospheric microbiota generation, and both microbial community and metabolites in rhizosphere of P. vittata correlate to increased bioavailable As. Multi-omics analysis revealed that pterosins enrich microbes that potentially promote As phytoextraction. This study extends the current view of rhizospheric plant-microbes synergistic effects of hyperaccumulators on phytoextraction, which provides clues for developing efficient As phytoremediation approaches.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Pteris/metabolismo , Solo/química , Poluentes do Solo/metabolismo
13.
J Fungi (Basel) ; 8(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448634

RESUMO

Colletotrichum gloeosporioides is a phytopathogenic fungus that causes devastating losses in strawberries without effective countermeasures. Members of the genus Photorhabdus exhibit antimicrobial capability and have been found to have the potential for use as biocontrol agents against C. gloeosporioides. Photorhabdus species exhibit two phase variations with a differentiated composition of secondary metabolites designated to each phase. In this study, Photorhabdus akhurstii sp. nov. 0813-124 exhibited phase I (PL1) and phase II (PL2); however, only PL1 displayed distinct inhibition of C. gloeosporioides in the confrontation assay. We identified the bioactive ingredients of P. akhurstii sp. nov. 0813-124 to be glidobactin A and cepafungin I, with MIC values lower than 1.5 and 2.0 µg/mL, respectively. Furthermore, we revealed the biosynthetic gene cluster (BGC) of corresponding bioactive molecules through genomics analysis and determined its expression level in PL1 and PL2. The expression of glidobactin BGC in PL1 increased rapidly within 24 h, while PL2 was eventually stimulated after 60 h. In summary, we demonstrated that P. akhurstii sp. nov. 0813-124 could potentially be used as a biocontrol agent or part of a natural product repertoire for combating C. gloeosporioides.

14.
Phytopathology ; 112(4): 775-783, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34587815

RESUMO

Paenibacillus polymyxa is a beneficial bacterium for plant health. P. polymyxa TP3 exhibits antagonistic activity toward Botrytis cinerea and alleviates gray mold symptoms on the leaves of strawberry plants. Moreover, suppression of gray mold on the flowers and fruits of strawberry plants in field trials, including vegetative cells and endospores, was demonstrated, indicating the potential of strain TP3 as a biological control agent. To examine the anti-B. cinerea compounds produced by P. polymyxa TP3, we performed matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and fusaricidin-corresponding mass spectra were detected. Moreover, fusaricidin-related signals appeared in imaging mass spectrometry of TP3 when confronted with B. cinerea. By using liquid chromatography mass spectrometry-based molecular networking approach, we identified several fusaricidins including a new variant of mass/charge ratio 917.5455 with serine in the first position of the hexapeptide. Via advanced mass spectrometry and network analysis, fusaricidin-type compounds produced by P. polymyxa TP3 were efficiently disclosed and were presumed to play roles in the antagonism against gray mold pathogen B. cinerea.


Assuntos
Fragaria , Paenibacillus polymyxa , Botrytis , Fragaria/microbiologia , Paenibacillus polymyxa/genética , Fragmentos de Peptídeos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Timopoietinas
15.
Environ Microbiol ; 24(1): 276-297, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863027

RESUMO

Brown root rot (BRR) caused by Phellinus noxius is a destructive tree disease in tropical and subtropical areas. To understand how BRR affects the composition of the plant rhizoplane-enriched microbiota, the microbiomes within five root-associated compartments (i.e., bulk soil, old/young root rhizosphere soil, old/young root tissue) of Ficus trees naturally infected by P. noxius were investigated. The level of P. noxius infection was determined by quantitative PCR. Illumina sequencing of the internal transcribed spacer and 16S rRNA revealed that P. noxius infection caused a significant reduction in fungal diversity in the bulk soil, the old root rhizosphere soil, and the old root tissue. Interestingly, Cosmospora was the only fungal genus positively correlated with P. noxius. The abundance and composition of dominant bacterial taxa such as Actinomadura, Bacillus, Rhodoplanes, and Streptomyces differed between BRR-diseased and healthy samples. Furthermore, 838 isolates belonging to 26 fungal and 35 bacterial genera were isolated and tested for interactions with P. noxius. Antagonistic activities were observed for isolates of Bacillus, Pseudomonas, Aspergillus, Penicillium, and Trichoderma. Cellophane overlay and cellulose/lignin utilization assays suggested that Cosmospora could tolerate the secretions of P. noxius and that the degradation of lignin by P. noxius may create suitable conditions for Cosmorpora growth.


Assuntos
Ficus , Microbiota , Trichoderma , Basidiomycota , Microbiota/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Árvores/microbiologia
16.
J Nat Prod ; 84(7): 1898-1903, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34185528

RESUMO

Theissenia cinerea 89091602 is a previously reported plant-derived bioactive fungal strain, and the active principles separated from the extracts of its submerged culture were shown to exhibit potent anti-neuroinflammatory activities in both cellular study and animal testing. In a continuation of our previous investigation on the bioactive entities from this fungus, solid state fermentation was performed in an attempt to diversify the bioactive secondary metabolites. In the present study, five previously unreported polyketides, theissenophenol (1), theissenepoxide (2), theissenolactone D (3), theissenone (4), and theissenisochromanone (5), together with the known theissenolactone B (6), theissenolactone C (7), and arthrinone (8), were isolated and characterized through spectroscopic analysis and comparison with the literature data. The configurations of theissenepoxide (2) and theissenisochromanone (5) were further corroborated by single-crystal X-ray diffraction data analysis. Theissenone (4), theissenolactone B (6), theissenolactone C (7), and arthrinone (8) exhibited potent nitric oxide production inhibitory activities in murine brain microglial BV-2 cells with IC50 values of 5.0 ± 1.0, 4.5 ± 0.6, 1.1 ± 0.1, and 3.2 ± 0.3 µM, respectively, without any significant cytotoxic effects.


Assuntos
Anti-Inflamatórios/farmacologia , Ascomicetos/química , Microglia/efeitos dos fármacos , Policetídeos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Camundongos , Estrutura Molecular , Doenças Neuroinflamatórias , Óxido Nítrico , Policetídeos/isolamento & purificação , Taiwan
17.
Mar Drugs ; 19(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918939

RESUMO

Empedopeptins-eight amino acid cyclic lipopeptides-are calcium-dependent antibiotics that act against Gram-positive bacteria such as Staphylococcus aureus by inhibiting cell wall biosynthesis. However, to date, the biosynthetic mechanism of the empedopeptins has not been well identified. Through comparative genomics and metabolomics analysis, we identified empedopeptin and its new analogs from a marine bacterium, Massilia sp. YMA4. We then unveiled the empedopeptin biosynthetic gene cluster. The core nonribosomal peptide gene null-mutant strains (ΔempC, ΔempD, and ΔempE) could not produce empedopeptin, while dioxygenase gene null-mutant strains (ΔempA and ΔempB) produced several unique empedopeptin analogs. However, the antibiotic activity of ΔempA and ΔempB was significantly reduced compared with the wild-type, demonstrating that the hydroxylated amino acid residues of empedopeptin and its analogs are important to their antibiotic activity. Furthermore, we found seven bacterial strains that could produce empedopeptin-like cyclic lipopeptides using a genome mining approach. In summary, this study demonstrated that an integrated omics strategy can facilitate the discovery of potential bioactive metabolites from microbial sources without further isolation and purification.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/biossíntese , Genômica , Lipopeptídeos/biossíntese , Metabolômica , Oxalobacteraceae/metabolismo , Peptídeos Cíclicos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Biologia Computacional , Mineração de Dados , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Lipopeptídeos/farmacologia , Estrutura Molecular , Família Multigênica , Oligopeptídeos/biossíntese , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oxalobacteraceae/genética , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Biossíntese de Proteínas , Proteômica , Metabolismo Secundário , Relação Estrutura-Atividade
18.
Biofouling ; 37(3): 257-266, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33870823

RESUMO

Biofouling is a widespread phenomenon in oceans worldwide. With increasing human development and activities in open and coastal waters, and due to the environmental impact of AF organotins and copper-based paint, the demand for nontoxic antifouling (AF) paints is increasing. Various bioassays for antimicrobial activity, anti-biofilm formation and anti-barnacle settlement were established to evaluate the possibility of using marine natural products as AF agents. A series of natural products, isolated from the marine-derived fungi Trichoderma atroviride and T. reesei, were evaluated for their AF activity. One pyrone-type compound (1) demonstrated significant inhibitory activities toward barnacle cyprid settlement. Furthermore, a series of pyrone analogues (S1-S6) were synthesized, and their bioactivities were evaluated in the established systems. The results showed that compounds S5 and S6 exhibited a broad spectrum of bioactivities, such as anti-barnacle settlement, anti-biofilm formation and antimicrobial activities.


Assuntos
Incrustação Biológica , Policetídeos , Incrustação Biológica/prevenção & controle , Humanos , Hypocreales , Oceanos e Mares , Pironas/farmacologia
19.
Mar Drugs ; 19(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669051

RESUMO

Application of LC-MS/MS-based molecular networking indicated the ethanol extract of octocoral Asterospicularia laurae is a potential source for the discovery of new xenicane derivatives. A natural product investigation of this soft coral resulted in the isolation of four new xenicane diterpenoids, asterolaurins O‒R (1‒4), together with six known compounds, xeniolide-A (5), isoxeniolide-A (6), xeniolide-B (7), 7,8-epoxyxeniolide-B (8), 7,8-oxido-isoxeniolide-A (9), and 9-hydroxyxeniolide-F (10). The structures of isolated compounds were characterized by employing spectroscopic analyses, including 2D-NMR (COSY, HMQC, HMBC, and NOESY) and high-resolution electrospray ionization mass spectrometry (HRESIMS). Asterolaurin O is the first case of brominated tricarbocyclic type floridicin in the family Xeniidae. Concerning bioactivity, the cytotoxic activity of those isolates was evaluated. As a result, compounds 1 and 2 demonstrated a selective cytotoxic effect against the MCF-7 cell line at IC50 of 14.7 and 25.1 µM, respectively.


Assuntos
Antozoários/química , Antineoplásicos/isolamento & purificação , Diterpenos/isolamento & purificação , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Cromatografia Líquida , Diterpenos/química , Diterpenos/farmacologia , Humanos , Concentração Inibidora 50 , Células MCF-7 , Taiwan , Espectrometria de Massas em Tandem
20.
ISME J ; 15(6): 1858-1861, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33619352

RESUMO

Bacteria and fungi secrete many natural products that inhibit each other's growth and development. The dynamic changes in secreted metabolites that occur during interactions between bacteria and fungi are complicated. Pyochelin is a siderophore produced by many Pseudomonas and Burkholderia species that induces systemic resistance in plants and has been identified as an antifungal agent. Through imaging mass spectrometry and metabolomics analysis, we found that Phellinus noxius, a plant pathogen, can modify pyochelin and ent-pyochelin to an esterification product, resulting in reduced iron-chelation and loss of antifungal activity. We also observed that dehydroergosterol peroxide, the fungal metabolite, is only accumulated in the presence of pyochelin produced through bacteria-fungi interactions. For the first time, we show the fungal transformation of pyochelin in the microbial interaction. Our findings highlight the importance of understanding the dynamic changes of metabolites in microbial interactions and their influences on microbial communities.


Assuntos
Antifúngicos , Sideróforos , Antifúngicos/farmacologia , Fungos , Ferro , Pseudomonas , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA