Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Foods ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38890986

RESUMO

Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 µM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.

2.
Nanomicro Lett ; 16(1): 222, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884917

RESUMO

Solar-powered interfacial evaporation is an energy-efficient solution for water scarcity. It requires solar absorbers to facilitate upward water transport and limit the heat to the surface for efficient evaporation. Furthermore, downward salt ion transport is also desired to prevent salt accumulation. However, achieving simultaneously fast water uptake, downward salt transport, and heat localization is challenging due to highly coupled water, mass, and thermal transport. Here, we develop a structurally graded aerogel inspired by tree transport systems to collectively optimize water, salt, and thermal transport. The arched aerogel features root-like, fan-shaped microchannels for rapid water uptake and downward salt diffusion, and horizontally aligned pores near the surface for heat localization through maximizing solar absorption and minimizing conductive heat loss. These structural characteristics gave rise to consistent evaporation rates of 2.09 kg m-2 h-1 under one-sun illumination in a 3.5 wt% NaCl solution for 7 days without degradation. Even in a high-salinity solution of 20 wt% NaCl, the evaporation rates maintained stable at 1.94 kg m-2 h-1 for 8 h without salt crystal formation. This work offers a novel microstructural design to address the complex interplay of water, salt, and thermal transport.

3.
Adv Mater ; : e2406055, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829267

RESUMO

Elastic aerogels can dissipate aerodynamic forces and thermal stresses by reversible slipping or deforming to avoid sudden failure caused by stress concentration, making them the most promising candidates for thermal protection in aerospace applications. However, existing elastic aerogels face difficulties achieving reliable protection above 1500 °C in aerobic environments due to their poor thermomechanical stability and significantly increased thermal conductivity at elevated temperatures. Here, a multiphase sequence and multiscale structural engineering strategy is proposed to synthesize mullite-carbon hybrid nanofibrous aerogels. The heterogeneous symbiotic effect between components simultaneously inhibits ceramic crystalline coarsening and carbon thermal etching, thus ensuring the thermal stability of the nanofiber building blocks. Efficient load transfer and high interfacial thermal resistance at crystalline-amorphous phase boundaries on the microscopic scale, coupled with mesoscale lamellar cellular and locally closed-pore structures, achieve rapid stress dissipation and thermal energy attenuation in aerogels. This robust thermal protection material system is compatible with ultralight density (30 mg cm-3), reversible compression strain of 60%, extraordinary thermomechanical stability (up to 1600 °C in oxidative environments), and ultralow thermal conductivity (50.58 mW m-1 K-1 at 300 °C), offering new options and possibilities to cope with the harsh operating environments faced by space exploration.

5.
Anal Chem ; 96(22): 9192-9199, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758357

RESUMO

Singlet oxygen (1O2) plays imperative roles in a variety of biotic or abiotic stresses in crops. The change of its concentration within a crop is closely related to the crop growth and development. Accordingly, there is an urgent need to develop an efficient analytical method for on-site quantitative detection of 1O2 in crops. Here, we judiciously constructed a novel ratiometric fluorescent probe, SX-2, for the detection of 1O2 in crops. Upon treating with 1O2, probe SX-2 displayed highly selective ratiometric fluorescence response, which is favorable for the quantitative detection of 1O2. Concurrently, the fluorescence solution color of probe SX-2 was varied, obviously from blue to yellow, indicating that the probe is beneficial for on-site detection by the naked eye. Sensing reaction mechanism studies showed that the 2,3-diphenyl imidazole group in SX-2 could function as a new selective recognition group for 1O2. Probe SX-2 was utilized for the detection of photoirradiation-induced 1O2 and endogenous 1O2 in living cells. The changes in the 1O2 level in zebrafish were also tracked by fluorescence imaging. In addition, the production of 1O2 in crop leaves under a light source of different wavelengths was studied. The results demonstrated more 1O2 were produced under a light source of 365 nm. Furthermore, to achieve on-site quantitative detection, a mobile fluorescence analysis device has been made. Probe SX-2 and mobile fluorescence analysis device were capable of on-site quantitative detecting of 1O2 in crops. The method developed herein will be convenient for the on-site quantitative measurement of 1O2 in distinct crops.


Assuntos
Produtos Agrícolas , Corantes Fluorescentes , Oxigênio Singlete , Peixe-Zebra , Corantes Fluorescentes/química , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Animais , Imagem Óptica , Humanos
6.
Int J Biol Macromol ; 271(Pt 1): 132111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821788

RESUMO

The objective of this study was to understand how the dynamic rheological behaviors of high-amylose wheat (HAW) dough during various heating stages measured using a mixolab were affected by the starch properties. At the heating stage of 30 °C - 90 °C, low minimum (C2) and peak (C3) torques were observed for HAW doughs, which resulted from their reduced starch granule swelling. During holding at 90 °C, HAW doughs had low minimum (C4) and C3 - C4 torques, indicating a good resistance to mechanical shear and endogenous enzyme degradation. HAW doughs also had low final (C5) and setback (C5 - C4) torques, consistent with their low starch swelling power and solubility. The increased amylose in HAW starch formed long-chain double-helical B-type polymorph and amylose-lipid complex, which resulted in high starch gelatinization-temperatures and enthalpy change, low swelling power and solubility, low pasting viscosity, and high resistance of swollen granules to mechanical shear and enzyme degradation. The overall patterns of dough-rheological behavior of HAW doughs during heating were similar to their respective starch pasting profiles, indicating that starch was the dominant contributor to the dough rheology during heating. This study provides useful information for food applications and manufacturing of HAW-based products, especially none-fermented products requiring firm texture and low viscosity.


Assuntos
Amilose , Reologia , Amido , Triticum , Amilose/química , Triticum/química , Amido/química , Viscosidade , Farinha/análise , Solubilidade , Temperatura Alta , Calefação
7.
J Colloid Interface Sci ; 666: 322-330, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603875

RESUMO

The commercial application of lithium-sulfur batteries is primarily impeded by the constant shuttling of soluble polysulfides and sluggish redox kinetics. Nowadays, the discovery of the heterojunction, which combines materials with diverse properties, offers a new perspective for overcoming these obstacles. Herein, a functional coating separator for the lithium-sulfur battery is designed using a MnO2-ZnS p-n heterojunction with a spontaneous built-in electric field (BIEF). The MnO2 nanowire provides suitable adsorption capacity for polysulfides, while the abundant reactive sites brought by ZnS ensure efficient conversion. Moreover, the BIEF significantly facilitates the migration of electrons and polysulfides at the MnO2-ZnS interface, enabling a smooth "adsorption-diffusion-conversion" reaction mechanism. By serving as both the adsorption module and catalytic sites, this BIEF allows batteries utilizing separators modified with MnO2-ZnS heterojunction to achieve an impressive initial capacity of 1511.1 mAh g-1 at 0.1C and maintain a capacity decay rate of merely 0.048% per cycle at 2.0C after 1000 cycles. Even when increasing sulfur loading to 9.4 mg cm-2 in lean electrolyte (5.4 µL mg-1), the battery still exhibits an ultrahigh areal capacity of 6.0 mAh cm-2 after 100 cycles.

8.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474923

RESUMO

Risky driving is a major factor in traffic incidents, necessitating constant monitoring and prevention through Intelligent Transportation Systems (ITS). Despite recent progress, a lack of suitable data for detecting risky driving in traffic surveillance settings remains a significant challenge. To address this issue, Bayonet-Drivers, a pioneering benchmark for risky driving detection, is proposed. The unique challenge posed by Bayonet-Drivers arises from the nature of the original data obtained from intelligent monitoring and recording systems, rather than in-vehicle cameras. Bayonet-Drivers encompasses a broad spectrum of challenging scenarios, thereby enhancing the resilience and generalizability of algorithms for detecting risky driving. Further, to address the scarcity of labeled data without compromising detection accuracy, a novel semi-supervised network architecture, named DGMB-Net, is proposed. Within DGMB-Net, an enhanced semi-supervised method founded on a teacher-student model is introduced, aiming at bypassing the time-consuming and labor-intensive tasks associated with data labeling. Additionally, DGMB-Net has engineered an Adaptive Perceptual Learning (APL) Module and a Hierarchical Feature Pyramid Network (HFPN) to amplify spatial perception capabilities and amalgamate features at varying scales and levels, thus boosting detection precision. Extensive experiments on widely utilized datasets, including the State Farm dataset and Bayonet-Drivers, demonstrated the remarkable performance of the proposed DGMB-Net.

10.
Bioresour Technol ; 395: 130315, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215887

RESUMO

The iron materials are commonly employed to enhance resource recovery from waste activated sludge through anaerobic digestion (AD). The influence of different iron sources, such as Fe2O3, Fe3O4, and FeCl3 on methane production and phosphorus transformation in AD systems with thermal hydrolyzed sludge as the substrate was assessed in this study. The results indicated that iron oxides effectively promote methane yield and methane production rate in AD systems, resulting in a maximum increase in methane production by 1.6 times. Soluble FeCl3 facilitated the removal of 92.3% of phosphorus from the supernatant through the formation of recoverable precipitates in the sludge. The introduction of iron led to an increase in the abundance of bacteria responsible for hydrolysis and hydrogenotrophic methanogenesis. However, the enrichment of microbial communities varied depending on the specific irons used. This study provides support for AD systems that recover phosphorus and produce methane efficiently from waste sludge.


Assuntos
Cloretos , Compostos Férricos , Ferro , Esgotos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Fósforo , Metano , Reatores Biológicos
11.
Biomed Mater ; 19(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38194710

RESUMO

Posterior capsule opacification (PCO) is a main complication after cataract surgery and intraocular lens (IOLs) implantation and is attributed to residual lens epithelial cells (LECs) migrating to the IOL surface and posterior capsules. IOL surface modification has been a newly-developing research filed in recent years; however, the applicability and economical acquisition of modified materials remain unsolved. In this study, we first applied a metal-polyphenolic network coating with a self-assembly technique on the IOL surface by using tannic acid (TA) combined with AlCl3, which are easily acquire and applying on the IOL surface to solve the IOL transmittance affair. Using wound healing and Transwell assay to verify AZD0364 inhibits cell migration (P< 0.05), the lipopolysaccharide-induced macrophage inflammation model to verify pterostilbene (PTE) inhibits the inflammatory reaction (P< 0.01). By optimizes its self-assembly coating parameters and calculating its drug release kinetics, we successfully loaded these two drugs on the coating, named TA (AZD0364/PTE) IOL. Its surface morphology characteristics were analyzed by scanning electron microscope, x-ray photoelectron spectrometer and water contact angle. The optical performance was carefully investigated by optical instruments and equipment (n= 3). Thein vitroresults showed that TA (AZD0364/PTE) IOL can significantly inhibit cell adhesion and acute inflammation (n= 3,P< 0.0001). Importantly, afterin vivoimplantation for 28 d with eight rabbits PCO models in two groups, the TA (AZD0364/PTE) IOL group maintained clear refracting media and decreased the inflammatory reaction compared with the original IOL group (P< 0.05). This study provides a new applicable and economical strategy for preventing PCO and offers a reference for the next generation of IOLs that benefit cataract patients.


Assuntos
Opacificação da Cápsula , Lentes Intraoculares , Polifenóis , Animais , Humanos , Coelhos , Opacificação da Cápsula/prevenção & controle , Inflamação/prevenção & controle , Desenho de Prótese , Complicações Pós-Operatórias/prevenção & controle
12.
Int J Biol Macromol ; 260(Pt 1): 129419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219936

RESUMO

Interests in using high-amylose maize (HAM) flour and starch for low glycemic index foods continue to grow. The objective of this work was to understand resistant-starch formation during drying the HAM kernels. Freshly harvested HAM kernels with 28.2 % initial moisture were subjected to sun drying (~30 °C) or hot-air drying at 50 °C, 70 °C, 90 °C, or 110 °C. The enzymatic digestibility of HAM flour decreased from 63.6 % to 41.1 % as the drying temperature increased from 30 °C to 110 °C. The swelling power, solubility, and overall viscosity of HAM flours milled from kernels dried at 110 °C decreased, whereas the peak and conclusion gelatinization temperatures, enthalpy change, and relative crystallinity increased compared to those of flours from kernels dried at 30 °C, 50 °C, 70 °C, and 90 °C. Light microscopic and scanning electron microscopic images showed that starch granule aggregation in HAM flour increased with increasing drying-temperatures. The aggregates remained after 16 h enzymatic hydrolysis of cooked HAM flours. These results suggested that the increase of enzymatic resistance of HAM flour resulted from the formation of high temperature-resistant ordered structures in starch granules and the starch aggregates less accessible to enzymatic hydrolysis.


Assuntos
Amilose , Zea mays , Amilose/química , Zea mays/química , Amido Resistente , Amido/química , Viscosidade , Farinha/análise , Temperatura Alta
13.
Chemistry ; 30(2): e202302867, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37885053

RESUMO

Lithium metal batteries are deemed as an optimal candidate for the next generation of durable energy storage devices. However, the growth of lithium dendrite and significant volume expansion pose as obstacles that impede the application of lithium metal batteries. In this work, a functional copper current collector was designed by coating it with Co-doped ZnO (Co/ZnO) to enhance the lithiophilicity through local electric fields and built-in magnetic fields induced by the ferromagnetic material. The incorporation of Co not only induces a local electric field and thus accelerating electron transfer, but also imparts the ferromagnetic behavior to ZnO, resulting in an internal magnetic field to regulate the dynamic trajectory. Profiting from the above advantages, the symmetric cells have excellent cycle stability in 1 mA cm-2 and 1 mAh cm-2 , maintaining ultra-low voltage for over 2000 h. This study provides a realizable pathway for next-generation current collector of copper modification.

14.
Chemistry ; 30(8): e202303507, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37994505

RESUMO

The Sabatier principle suggests that an excessive adsorption of lithium polysulfides (LiPSs) by metal compounds may hinder their conversion in the absence of a conversion module. Therefore, it is imperative to establish a synergetic effect mechanism between "strong adsorption" and "rapid conversion" for LiPSs. To achieve this coexistence, a molybdenum-doped MnS/MnO@C porous structure is designed as a multifunctional coating on the polypropylene (PP) separator. The incorporation of MnS/MnO@C enhances the adsorption capacity towards LiPSs, while molybdenum facilitates subsequent conversion. Benefiting from the synergistic effect of each component and its large specific surface area, the cell with Mo-doped MnS/MnO@C coating achieves smooth adsorption-diffusion-conversion processes and exhibits an appreciable rate performance with outstanding cycling stability. Even when sulfur loading increases to 9.68 mg cm-2 , the modified battery delivers an excellent initial areal capacity of 11.69 mAh cm-2 and maintains 6.97 mAh cm-2 after 50 cycles at 0.1 C. This study presents a promising approach to simultaneously accomplish "strong adsorption" and "rapid conversion" of polysulfides, offering novel perspectives for devising dual-functional modified separators.

15.
Sci Total Environ ; 912: 169326, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104804

RESUMO

Sexual reproduction is crucial for population continuity in clonal plants. The effect of nutrient translocation between ramets on sexual reproduction of clonal plants under nitrogen addition remains unclear. In this study, we focused on clonal fragments of Leymus chinensis reproductive ramets with different number of vegetative ramets connected to tillering nodes. A series of pot experiments was conducted under nitrogen addition, including 13C and 15N bidirectional labelling of vegetative ramets and reproductive ramets at the milk-ripe stage, determination of the 13C and 15N amount translocated, and assessment of the quantitative characteristics, nitrogen and carbon concentrations of reproductive ramets and vegetative ramets. Nitrogen addition promoted the translocation of 13C while inhibiting 15N between vegetative ramets and reproductive ramets. With an increase in the number of connected vegetative ramets, the 13C translocated by reproductive ramets and the 15N translocated by reproductive and vegetative ramets gradually increased. The translocation of 13C and 15N between vegetative and reproductive ramets was bidirectional and unequal. The translocated amount of 13C and 15N from reproductive ramets to vegetative ramets was always higher than that from vegetative ramets to reproductive ramets. Nitrogen addition did not prominently affect the sexual reproductive performance of L. chinensis, whereas the number of connected vegetative ramets both positively and negatively affected sexual reproductive performance. Ramet biomass is an important driver of nutrient acquisition by L. chinensis ramets. We demonstrate for the first time that unequal nutrient translocation between ramets affects sexual reproductive performance in L. chinensis. The findings contribute to an enhanced understanding of the reproductive strategies of clonal plant populations in future environments.


Assuntos
Nitrogênio , Poaceae , Carbono , Biomassa , Reprodução
16.
Artigo em Inglês | MEDLINE | ID: mdl-38090874

RESUMO

We study the uniform approximation of echo state networks (ESNs) with randomly generated internal weights. These models, in which only the readout weights are optimized during training, have made empirical success in learning dynamical systems. Recent results showed that ESNs with ReLU activation are universal. In this article, we give an alternative construction and prove that the universality holds for general activation functions. Specifically, our main result shows that, under certain condition on the activation function, there exists a sampling procedure for the internal weights so that the ESN can approximate any continuous casual time-invariant operators with high probability. In particular, for ReLU activation, we give explicit construction for these sampling procedures. We also quantify the approximation error of the constructed ReLU ESNs for sufficiently regular operators.

17.
Front Microbiol ; 14: 1256874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920262

RESUMO

Background and aim: Previous studies have reported an association between gut microbiota and cirrhosis. However, the causality between intestinal flora and liver cirrhosis still remains unclear. In this study, bi-directional Mendelian randomization (MR) analysis was used to ascertain the potential causal effect between gut microbes and cirrhosis. Methods: Large-scale Genome Wide Association Study (GWAS) data of cirrhosis and gut microbes were obtained from FinnGen, Mibiogen consortium, and a GWAS meta-analysis of Alcoholic cirrhosis (ALC). Two-sample MR was performed to determine the causal relationship between gut microbiota and cirrhosis. Furthermore, a bi-directional MR analysis was employed to examine the direction of the causal relations. Result: In MR analysis, we found that 21 gut microbiotas were potentially associated with cirrhosis. In reverse MR analysis, 11 gut microbiotas displayed potentially associations between genetic liability in the gut microbiome and cirrhosis. We found that the family Lachnospiraceae (OR: 1.59, 95% CI:1.10-2.29) might be harmful in cirrhotic conditions (ICD-10: K74). Furthermore, the genus Erysipelatoclostridium might be a protective factor for cirrhosis (OR:0.55, 95% CI:0.34-0.88) and PBC (OR:0.68, 95% CI:0.52-0.89). Combining the results from the MR analysis and reverse MR analysis, we firstly identified the Genus Butyricicoccus had a bi-directional causal effect on PBC (Forward: OR: 0.37, 95% CI:0.15-0.93; Reverse: OR: 1.03, 95% CI:1.00-1.05). Conclusion: We found a new potential causal effect between cirrhosis and intestinal flora and provided new insights into the role of gut microbiota in the pathological progression of liver cirrhosis.

18.
Adv Mater ; 35(51): e2301538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876329

RESUMO

The strong electrostatic interaction between high-charge-density zinc ions (112 C mm-3 ) and the fixed crystallinity of traditional oxide cathodes with delayed charge compensation hinders the development of high-performance aqueous zinc-ion batteries (AZIBs). Herein, to intrinsically promote electron transfer efficiency and improve lattice tolerance, a revolutionary family of high-entropy oxides (HEOs) materials with multipath electron transfer and remarkable structural stability as cathodes for AZIBs is proposed. Benefiting from the unique "cock-tail" effect, the interaction of diverse type metal-atoms in HEOs achieves essentially broadened d-band and lower degeneracy than monometallic oxides, which contribute to convenient electron transfer and one of the best rate-performances (136.2 mAh g-1 at 10.0 A g-1 ) in AZIBs. In addition, the intense lattice strain field of HEOs is highly tolerant to the electrostatic repulsion of high-charge-density Zn2+ , leading to the outstanding cycling stability in AZIBs. Moreover, the super selectability of elements in HEOs exhibits significant potential for AZIBs.

19.
Medicine (Baltimore) ; 102(43): e35592, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904477

RESUMO

This paper aims at analyzing the characteristics of cardiopulmonary functions in the patients with ankylosing spondylitis (AS), and exploring the influence of global kyphosis (GK) on cardiopulmonary functions. Clinical data of 46 patients with AS and kyphosis, who had been admitted in our hospital from October 2021 to October 2022, were analyzed retrospectively. According to the to global kyphosis (GK) angle, 23 subjects were divided into Severe Group (GK > 95°), and 23 subjects were divided into in the Moderate Group (80°â€…≤ GK ≤ 95°). Cardiac structure and cardiopulmonary function parameters were compared between both groups, and the influences of GK Angle on other parameters were analyzed by Pearson or Spearman correlation analysis. The cardiac structure and function measurements in both groups were within the normal range. The pulmonary functions of both groups decreased to different extents. Correlation analysis showed that GK Angle was significantly negatively correlated with the left atrioventricular size (LAD, LVDD, LVSD) and diastolic function parameters (E/A, e'/a') in the patients with AS (P < .05); GK Angle was negatively correlated with restrictive ventilation parameters in the patients with AS (P < .05). The GK Angle of the patients with AS affects the cardiac structure and diastolic function. The larger the GK Angle is, the smaller the left and right at ventricle diameters are. In addition, GK Angle also affects the left ventricular diastolic function. GK Angle is related to the degree of pulmonary function impairment, and the larger the GK Angle is, the worse the pulmonary function it will be.


Assuntos
Cifose , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/complicações , Estudos Retrospectivos , Cifose/etiologia , Pulmão , Coração , Vértebras Lombares , Vértebras Torácicas
20.
Huan Jing Ke Xue ; 44(8): 4698-4705, 2023 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-37694662

RESUMO

Carbon (C), nitrogen (N), and phosphorus (P) are important nutrients, and their ecological stoichiometric characteristics can reflect the quality and fertility capacity of soil, which is critical to understanding the stable mechanisms of estuarine wetland ecosystems. Under global changes, the increase in salinity and flooding caused by sea level rise will lead to changes in biogeochemical processes in estuarine wetlands, which is expected to affect the ecological stoichiometric characteristics of soil C, N, and P and ultimately interfere with the stability of wetland ecosystems. However, it remains unclear how the C, N, and P ecological stoichiometric characteristics respond to the water-salt environment in estuarine wetlands. We differentiated changes in the C, N, and P ecological stoichiometric characteristics through an ex-situ culture experiment for 23 months in the Yellow River Estuary Wetland. The five sites with distinct tidal hydrology were selected to manipulate translocation of soil cores from the freshwater marsh to high-, middle-, and low-tidal flats in June 2019. The results showed that soil water content (SWC); electrical conductivity (EC); and C, N, and P ecological stoichiometric characteristics of freshwater marsh soil significantly changed after translocation for 23 months. SWC decreased on the high- and middle-tidal flats (P<0.05) and increased on the low-tidal flat (P<0.05). EC increased to different degrees on all three tidal flats (P<0.05). Soil total organic carbon (TOC) and total nitrogen (TN) were significantly lower on the high-tidal flat (P<0.05), whereas total phosphorus (TP) was significantly lower on the middle- and high-tidal flats (P<0.05). C:N was decreased on the high- and middle-tidal flats (P<0.05); C:P and N:P were lower on the high-tidal flat; and all C, N, and P ecological stoichiometric characteristics showed no change on the low-tidal flat (P>0.05). Pearson's analysis showed that the ecological stoichiometric characteristics of C, N, and P were related to some properties of soil over the culture sites. The PLS-SEM model showed that the water-salt environment had different effects on soil C:N, C:P, and N:P through the main pathways of negative effects on soil TOC and TP. The results suggest that sea level rise may impact the C, N, and P ecological stoichiometric characteristics in freshwater marsh soil, resulting in some possible changes in the nutrient cycles of estuarine wetlands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA