Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 6463-6483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946882

RESUMO

Purpose: Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods: First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results: TPP-PCNLs exhibited good stability and biocompatibility. In vitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion: TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.


Assuntos
Apoptose , Cério , Hematopoese , Mitocôndrias , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Humanos , Proteção Radiológica/métodos , Linhagem Celular
2.
Colloids Surf B Biointerfaces ; 238: 113904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603845

RESUMO

Ursodeoxycholic acid (UDCA) is the preferred treatment for various types of cholestasis, however, its effectiveness is limited because of its insolubility in water. We used polyethylene glycol (PEG) and cationic polymer polyethylenimine (PEI) to double-modify graphite oxide (PPG) as a drug delivery system. UDCA was successfully loaded onto PPG through intermolecular interactions to form UDCA-PPG nanoparticles. UDCA-PPG nanoparticles not only improve the solubility and dispersibility of UDCA, but also have good biocompatibility and stability, which significantly improve the delivery rate of UDCA. The results indicated that UDCA-PPG significantly reduced ROS levels, promoted cell proliferation, protected mitochondrial membrane potential, reduced DNA damage and reduced apoptosis in the DCA-induced cell model. In a mouse cholestasis model established by bile duct ligation (BDL), UDCA-PPG improved liver necrosis, fibrosis, and mitochondrial damage and reduced serum ALT and AST levels, which were superior to those in the UDCA-treated group. UDCA-PPG reduced the expression of the apoptosis-related proteins, Caspase-3 and Bax, increased the expression of Bcl-2, and reduced the expression of the oxidative stress-related proteins, NQO and HO-1, as well as the autophagy-related proteins LC3, p62 and p-p62. Therefore, UDCA-PPG can enhance the therapeutic effect of UDCA in cholestasis, by significantly improving drug dispersibility and stability, extending circulation time in vivo, promoting absorption, decreasing ROS levels, enhancing autophagy flow and inhibiting apoptosis via the Bcl-2/Bax signaling pathway.


Assuntos
Apoptose , Colestase , Grafite , Hepatócitos , Nanocompostos , Ácido Ursodesoxicólico , Grafite/química , Grafite/farmacologia , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/química , Animais , Apoptose/efeitos dos fármacos , Nanocompostos/química , Camundongos , Colestase/tratamento farmacológico , Colestase/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Humanos
3.
J Mater Chem B ; 12(13): 3292-3306, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502068

RESUMO

The regeneration and repair of diabetic wounds, especially those including bacterial infection, have always been difficult and challenging using current treatment. Herein, an effective strategy is reported for constructing glucose-responsive functional hydrogels using nanocomposites as nodes. In fact, tannic acid (TA)-modified ceria nanocomposites (CNPs) and a zinc metal-organic framework (ZIF-8) were employed as nodes. Subsequent crosslinking with 3-acrylamidophenylboronic acid achieved functional nanocomposite-hydrogels (TA@CN gel, TA@ZMG gel) by radical-mediated polymerization. Compared with a simple physically mixed hydrogel system, the mechanical properties of TA@CN gel and TA@ZMG gel are significantly enhanced due to the intervention of the nanocomposite nodes. In addition, this kind of nanocomposite hydrogel can realize the programmed loading of drugs and release of drugs in response to glucose/PH, to coordinate and promote its application in the regeneration and repair of diabetic wounds and infected diabetic wounds. Specifically, TA@CN gel can remove reactive oxygen species and generate oxygen through its various enzymatic activities. At the same time, it can effectively promote neovascularization, thus promoting the regeneration and repair of diabetic wounds. Furthermore, glucose oxidase-loaded TA@ZMG gel exhibits glucose response and pH-regulating functions, triggering programmed metformin (Met) release by degrading the metal-organic framework (MOF) backbone. It also exhibited additional synergistic effects of antibacterial activity, hair regeneration and systemic blood glucose regulation, which make it suitable for the repair of more complex infected diabetic wounds. Overall, this novel nanocomposite-mediated hydrogel holds great potential as a biomaterial for the healing of chronic diabetic wounds, opening up new avenues for further biomedical applications.


Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Nanocompostos , Polifenóis , Hidrogéis , Nanogéis , Glucose
4.
J Control Release ; 362: 409-424, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666303

RESUMO

The preparation of hydrogels as drug carriers via radical-mediated polymerization has significant prospects, but the strong oxidizing ability of radicals and the high temperatures generated by the vigorous reactions limits the loading for reducing/heat-sensitive drugs. Herein, an applicable hydrogel synthesized by radical-mediated polymerization is reported for the loading and synergistic application of specific drugs. First, the desired sol is obtained by polymerizing functional monomers using a radical initiator, and then tannic-acid-assisted specific drug mediates sol-branched phenylboric acid group to form the required functional hydrogel (New-gel). Compared with the conventional single-step radical-mediated drug-loading hydrogel, the New-gel not only has better chemical/physical properties but also efficiently loads and releases drugs and maintains drug activity. Particularly, the New-gel has excellent loading capacity for oxygen, and exhibits significant practical therapeutic effects for diabetic wound repair. Furthermore, owing to its high light transmittance, the New-gel synergistically promotes the antibacterial effect of photosensitive drugs. This gelation strategy for loading drugs has further promising biomedical applications.


Assuntos
Temperatura Alta , Hidrogéis , Portadores de Fármacos , Antibacterianos/farmacologia
5.
J Nanobiotechnology ; 21(1): 294, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626334

RESUMO

BACKGROUND: The complex hyperglycemic, hypoxic, and reactive oxygen species microenvironment of diabetic wound leads to vascular defects and bacterial growth and current treatment options are relatively limited by their poor efficacy. RESULTS: Herein, a functional molecule-mediated copper ions co-assembled strategy was constructed for collaborative treatment of diabetic wounds. Firstly, a functional small molecule 2,5-dimercaptoterephthalic acid (DCA) which has symmetrical carboxyl and sulfhydryl structure, was selected for the first time to assisted co-assembly of copper ions to produce multifunctional nanozymes (Cu-DCA NZs). Secondly, the Cu-DCA NZs have excellent multicatalytic activity, and photothermal response under 808 nm irradiation. In vitro and in vivo experiments showed that it not only could efficiently inhibit bacterial growth though photothermal therapy, but also could catalyze the conversion of intracellular hydrogen peroxide to oxygen which relieves wound hypoxia and improving inflammatory accumulation. More importantly, the slow release of copper ions could accelerate cellular proliferation, migration and angiogenesis, synergistically promote the healing of diabetic wound furtherly. CONCLUSIONS: The above results indicate that this multifunctional nanozymes Cu-DCA NZs may be a potential nanotherapeutic strategy for diabetic wound healing.


Assuntos
Cobre , Diabetes Mellitus , Humanos , Cobre/farmacologia , Catálise , Proliferação de Células , Peróxido de Hidrogênio , Hipóxia , Cicatrização
6.
Int J Pharm ; 635: 122708, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36764415

RESUMO

Nedaplatin (NDP) plays an important role in the chemotherapies of non-small cell lung cancer (NSCLC). However, dose-limiting toxicities such as myelosuppression and drug resistance restrict its clinical application. Herein, we intended to overcome these defects by developing a PEGylated liposomal formulation encapsulated NDP (NDP-LPs). For the first time, we found the incompatibility between NDP and natural phospholipids such as egg phosphatidylcholine (EPC) using the high-performance liquid chromatography (HPLC) method. The orthogonal experimental design was applied to optimize the conditions for preparing NDP-LPs, with encapsulation efficiency (EE) as the evaluation indicator. The physicochemical properties of optimized NDP-LPs were further characterized, including particle size, zeta potential, EE, drug release profiles, and so on. Results showed that a significantly sustained-release profile of NDP-LPs was observed and the releasing time of NDP could reach as long as 8 days. At the cellular level, NDP encapsulated in the PEGylated liposomes enhanced its cellular uptake and possessed potent cytotoxic activity. After intravenous injection, NDP-LPs could accumulate at tumor sites and effectivelyinhibit tumor growth of mice without obvious adverse effects. In conclusion, our results demonstrated that PEGylated liposomes could serve as a promising carrier to enhance the therapeutic effects of NDP.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipossomos/química , Neoplasias Pulmonares/tratamento farmacológico , Preparações de Ação Retardada/uso terapêutico , Lipopolissacarídeos , Polietilenoglicóis/química , Tamanho da Partícula
7.
Int J Biol Macromol ; 227: 1258-1270, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464186

RESUMO

The healing process of infected wounds was limited by bacterial infection, excessive reactive oxygen species (ROS) accumulation, and tissue hypoxia. In order to alleviate the above situations, herein, a copper-rich multifunctional ultra-small Prussian blue nanozymes (HPP@Cu NZs) was constructed for infected wound synergistic treatment. Firstly, hyaluronic acid was modified by branched polyethyleneimine which could form a complex with copper ions, to construct copper-rich Prussian blue nanozymes. Secondly, the HPP@Cu NZs have a uniform ultra-small nano size and excellent photothermal response performance, exhibition of multifunctional enzymatic activity and anti-inflammatory properties. Finally, the slow release of copper ions in the HPP@Cu NZs could effectively promote the formation of new blood vessels, thus giving it multifunctional properties. In vitro and in vivo experiments showed that it not only could effectively inhibit and kill bacteria under 808 nm near-infrared laser but also could remove excessive ROS, regulate oxygen levels, and anti-inflammation. More importantly, the release of copper ions could synergistically promote the healing of infected wounds as well as good biocompatibility. Overall, our studies provide a multifunctional strategy for infected wounds with synergistic treatment based on carrier construction.


Assuntos
Cobre , Cicatrização , Cobre/farmacologia , Espécies Reativas de Oxigênio , Ferrocianetos , Antibacterianos/farmacologia
8.
Nat Commun ; 13(1): 6528, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319632

RESUMO

Considering that intravascular reactive oxygen species (ROS) and inflammation are two characteristic features of the atherosclerotic microenvironment, developing an appropriate strategy to treat atherosclerosis by synergistically regulating ROS and inflammation has attracted widespread attention. Herein, a special molecule, zoledronic acid, containing imidazole and bisphosphonate groups, was selected for the first time to assist the assembly of cerium ions and produce functionalized ceria-zoledronic acid nanocomposites (CZ NCs). It not only serves as a new carrier for different kinds of drugs (e.g. probucol, PB) but also exerts an efficient multienzyme activity to achieve collaborative therapy. More importantly, platelet membrane-coated biomimetic nanoplatform (PCZ@PB NCs) specifically accumulate at inflammatory atherosclerotic lesions, synergistically regulate ROS levels and inflammation, and efficiently inhibit foam cell formation. This novel assembly method can also be applied in the treatment of many other diseases associated with oxidative stress and inflammation.


Assuntos
Aterosclerose , Nanopartículas , Humanos , Espécies Reativas de Oxigênio , Nanopartículas/uso terapêutico , Ácido Zoledrônico/uso terapêutico , Aterosclerose/patologia , Inflamação/tratamento farmacológico
9.
Biomater Adv ; 136: 212775, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929293

RESUMO

Atherosclerosis (AS), the formation of plaque lesions in the walls of arteries, causes many mortalities and morbidities worldwide. Currently, achieving site-specific delivery and controlled release at plaques is difficult. Herein, we implemented the strategy of constructing a bionic multifunctional nanoplatform (BM-NP) for targeting and improving plaques. BM-NPs were prepared based on probucol-loaded mesoporous polydopamine (MPDA) carriers and were coated with platelet membranes to impart bionic properties. In vitro experiments confirmed that BM-NPs, which respond to near-infrared (NIR) for drug release, remove reactive oxygen species (ROS), thereby reducing the level of oxidized low-density lipoprotein (ox-LDL) and ultimately helping to inhibit macrophage foaming. In vivo experiments proved that BM-NPs actively accumulated in plaques in the mouse right carotid artery (RCA) ligation model. During treatment, BM-NPs with NIR laser irradiation more effectively reduced the area of plaque deposition and slowed the thickening of the arterial wall intima. More importantly, BM-NPs showed the advantage of inhibiting the increase in triglyceride (TG) content in the body, and good biocompatibility. Hence, our research results indicate that intelligent BM-NPs can be used as a potential nanotherapy to precisely and synergistically improve AS.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Animais , Aterosclerose/tratamento farmacológico , Dopamina/uso terapêutico , Liberação Controlada de Fármacos , Camundongos , Nanopartículas/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Espécies Reativas de Oxigênio/uso terapêutico
10.
Int J Biol Macromol ; 214: 697-707, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777511

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic liver disease closely related to obesity, which has become a global health problem. However, current pharmacological therapies for NAFLD are limited by potential side effects, low effectiveness and poor aqueous solubility. Herein, we designed functionalized drug-albumin nanocomposites (BAM15@BSA NPs), which were prepared by self-assembly of the anti-obesity small-molecule drug (BAM15) and bovine serum albumin (BSA), for treatment of NAFLD. The proposed BAM15@BSA NPs not only improve aqueous solubility and half-life of BAM15 but also exhibit hepatic-targeted capacity and an increased therapeutic efficacy. In vitro experiments revealed that BAM15@BSA NPs possessed excellent biocompatibility, and improved resistance to adipogenesis and reduced lipid accumulation in human hepatocellular carcinoma cells. In vivo, BAM15@BSA NPs showed liver targeting ability and powerful anti-obesity effects without altering body temperature or affecting food intake, and could effectively alleviate hepatic steatosis and improve therapeutic efficacy for NAFLD treatment. The above findings demonstrated that BAM15@BSA NPs potentially served as a safe and effective drug for NAFLD treatment.


Assuntos
Fármacos Antiobesidade , Nanocompostos , Hepatopatia Gordurosa não Alcoólica , Fármacos Antiobesidade/farmacologia , Humanos , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/tratamento farmacológico , Soroalbumina Bovina/metabolismo
11.
Front Bioeng Biotechnol ; 10: 919189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845402

RESUMO

Curcumin (CUR) is a natural bioactive compound that has attracted attention as a "golden molecule" due to its therapeutic properties against several types of tumors. Nonetheless, the antitumor application of CUR is hampered due to its extremely low aqueous solubility and chemical instability. Herein, a novel type of CUR-loaded polymeric micelles with intracellular K+-responsive controlled-release properties is designed and developed. The polymeric micelles are self-assembled by poly (N-isopropylacrylamide-co-acryloylamidobenzo-15-crown-5-co-N, N-dimethylacrylamide)-b-DSPE (PNDB-b-DSPE) block copolymers, and CUR. CUR is successfully loaded into the micelles with a CUR loading content of 6.26 wt%. The proposed CUR-PNDB-DSPE polymeric micelles exhibit a significant CUR release in simulated intracellular fluid due to the formation of 2 : 1 ''sandwich'' host-guest complexes of 15-crown-5 and K+, which lead to the hydrophilic outer shell of micelles to collapse and the drug to rapidly migrate out of the micelles. In vitro, the B16F10 cell experiment indicates that CUR-PNDB-DSPE micelles exhibit a high cellular uptake and excellent intracellular drug release in response to the intracellular K+ concentration. Moreover, CUR-PNDB-DSPE micelles show high cytotoxicity to B16F10 cells compared to free CUR and CUR-PEG-DSPE micelles. The polymeric micelles with intracellular K+-responsive controlled release properties proposed in this study provide a new strategy for designing novel targeted drug delivery systems for CUR delivery for cancer treatment.

12.
J Mater Chem B ; 10(29): 5644-5654, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819133

RESUMO

Developing intelligent responsive platforms to carry out high-performance therapy is of great interest for the treatment of tumors and their metastases. However, effective drug loading, activity maintenance, off-target leakage, and response to collaborative therapy remain great challenges. Herein, a targeted intelligent responsive mesoporous polydopamine (MPDA) nanosystem was reported for use in gene-mediated photochemotherapy for synergistic tumor treatment. First, the MPDA was surface modified to maintain a positive charge near the surface and to impart active targeting. Then, gambogic acid (GA) was encapsulated in the MPDA, solidified by phase change materials (PCMs), and finally loaded with siRNA by electrostatic interactions to obtain the smart nanodelivery system (PPMD@GA/si). In vitro and in vivo experiments showed that it not only effectively avoids siRNA inactivation and accidental release of GA, but also possesses potential for targeted accumulation to tumor tissue and mild-temperature photothermal therapy and chemotherapy via near infrared (NIR) radiation. Additionally, the release of siRNA could also effectively inhibit tumor invasion and metastasis to realize multimodal synergistic therapy. Overall, our studies provide a promising idea for synergistic tumor and metastasis treatment based on vector construction.


Assuntos
Nanopartículas , Neoplasias , Humanos , Indóis , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Polímeros/farmacologia , RNA Interferente Pequeno/farmacologia
13.
Mater Today Bio ; 15: 100308, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35711291

RESUMO

Diabetic wounds have an extremely complex microenvironment of hyperglycemia, hypoxia and high reactive oxygen species (ROS). Therefore, the regulation and management of this microenvironment may provide a new and improved treatment method for chronic diabetic wound healing. Herein, a glucose/ROS cascade-responsive nanozyme (CHA@GOx) was developed for diabetic wound treatment based on Ce-driven coassembly by a special dual ligand (alendronic acid and 2-methylimidazole) and glucose oxidase (GOx). It possesses superoxide dismutase and catalase mimic activities, which effectively remove excess ROS. In particular, it can catalyze excessive hydrogen peroxide generated by the glucose oxidation reaction to produce oxygen, regulate the oxygen balance of the wound, and reduce the toxic side effects of GOx, thus achieving the purpose of synergistically repairing diabetic wounds. In vitro experiments show that CHA@GOx assists mouse fibroblast migration and promotes human umbilical vein endothelial cell tube formation. In vivo, it can induce angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. Taken together, this study indicates that the coassembly of multifunctional nanozymes has implications in diabetic wound healing.

14.
Acta Biomater ; 140: 206-218, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879294

RESUMO

As the incidence of diabetes increases, its complication, diabetic foot ulcers, has become the main type of clinically chronic refractory wounds. Due to the hyperglycemic microenvironment of the diabetic wound, which leads to vascular defects and bacterial growth, the therapeutic effect of wound dressings lacking strategic design is relatively limited. In this study, we designed an injectable, "self-healing", and glucose-responsive multifunctional metal-organic drug-loaded hydrogel (DG@Gel) for diabetic wound healing. The functionalized hydrogel was prepared by phase-transfer-mediated metallo-nanodrugs, which were made by co-assembling zinc ions, organic ligands, and a small-molecule drug, deferoxamine mesylate (DFO), and the programmed loading of glucose oxidase (GOX). When injected into a diabetic wound, the GOX in DG@Gel changed the hyperglycemic wound microenvironment by decomposing excess glucose into hydrogen peroxide and glucuronic acid, which decreased the pH of the wound site. The low pH promoted the release of zinc ions and DFO, which exhibited synergistic antibacterial and angiogenesis activity for diabetic wound repair. In vitro experiments revealed the antibacterial activity and the cell proliferation, migration, and tube formation ability of DG@Gel. Moreover, in vivo experiments showed that DG@Gel can induce re-epithelialization, collagen deposition, and angiogenesis during wound healing in diabetic mice with good biocompatibility and biodegradability. The results suggest that this hydrogel is a promising innovative dressing for the treatment of diabetic wounds. STATEMENT OF SIGNIFICANCE: Diabetic ulcers, as one of the main types of chronic refractory wounds, are not treated effectively in the clinic due to a lack of strategic approach. In this study, we designed a glucose-responsive multifunctional metal-organic drug-loaded hydrogel (DG@Gel), which can change the hyperglycemic wound microenvironment by decomposing excess glucose into hydrogen peroxide and glucuronic acid. This in turn promoted the release of zinc ions and deferoxamine mesylate (DFO) in the hydrogel, which exhibited synergistic antibacterial and angiogenic activity for diabetic wound repair. Furthermore, the DG@Gel exhibited good biocompatibility and biodegradability in vivo. In general, this innovative strategy design may have great application potential in the treatment of various chronic wounds.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/farmacologia , Hidrogéis/química , Camundongos , Cicatrização
15.
ACS Appl Mater Interfaces ; 13(24): 27856-27867, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110146

RESUMO

Combining photodynamic therapy (PDT), chemodynamic therapy (CDT), and ferroptosis is a valuable means for an enhanced anticancer effect. However, traditional combination of PDT/CDT/ferroptosis faces several hurdles, including excess glutathione (GSH) neutralization and preparation complexity. In this work, a versatile multifunctional nanoparticle (HCNP) self-assembled from two porphyrin molecules, chlorin e6 and hemin, is developed. The as-constructed HCNPs exhibit a peroxidase-mimic catalytic activity, which can lead to the in situ generation of endogenous O2, thereby enhancing the efficacy of PDT. Furthermore, the generation of hydroxyl radicals (•OH) in the tumor environment in reaction to the high level of H2O2 and the simultaneous disruption of intracellular GSH endow the HCNPs with the capacity of enhanced CDT, resulting in a more effective therapeutic outcome in combination with PDT. More importantly, GSH depletion further leads to the inactivation of GSH peroxide 4 and induced ferroptosis. Both in vitro and in vivo results showed that the combination of PDT/CDT/ferroptosis realizes highest antitumor efficacy significantly under laser irradiation. Therefore, by integrating the superiorities of O2 and •OH generation capacity, GSH-depletion effect, and bioimaging into a single nanosystem, the HCNPs are a promising single therapeutic agent for tumor PDT/CDT/ferroptosis combination therapy.


Assuntos
Antineoplásicos/uso terapêutico , Hemina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Catálise , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Hemina/química , Hemina/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Radical Hidroxila/metabolismo , Luz , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/efeitos da radiação , Oxigênio/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/efeitos da radiação
16.
J Mater Chem B ; 9(20): 4134-4142, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33972981

RESUMO

Atherosclerosis (AS) is a major cause of cardiovascular diseases, but its effective theranostic measure remains challenging thus far. Macrophages contribute to AS progress in diverse ways such as producing cytokines and reactive oxygen species (ROS), foaming macrophages, and differentiating into pro-inflammatory macrophages. With the aim of constructing a facile and efficacious theranostic system for diagnosis and treatment of AS, a templated self-assembly approach was developed. This strategy involves using indole molecule (indocyanine green (ICG) or IR783) as a template to assemble with probucol (PB) to gain multifunctional nanoparticles (IPNPs or IRPNPs). IPNPs and IRPNPs both showed excellent physicochemical properties, which testified the generality of the indole molecular self-assembly strategy for PB delivery. Besides, the nanoparticles have superior pharmaceutical characteristics including preventing macrophages from differentiating, more efficiently internalizing in inflammatory macrophages, eliminating overproduced ROS, lowering the level of inflammation cytokines, and inhibiting foaming. More importantly, IPNPs displayed effective therapeutic effects in AS model mice when administered via intravenous (i.v.) route. In addition, IPNPs and IRPNPs accumulated more effectively than ICG and IR783 via i.v. injection in the lesion area, and the blood circulation time was extended beyond 24 h. More interestingly, we discovered that the fluorescence imaging ability of IR783 and IRPNPs was more excellent than ICG and IPNPs, respectively. Moreover, a long-term treatment with IPNPs or IRPNPs revealed an excellent safety profile in mice. Accordingly, this self-assembly strategy developed herein is a universal and promising way for the delivery of lipophilic drugs. This study also provides new insights into developing effective theranostic agents for AS.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aterosclerose/tratamento farmacológico , Verde de Indocianina/farmacologia , Nanopartículas/química , Probucol/química , Nanomedicina Teranóstica , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Aterosclerose/metabolismo , Células Cultivadas , Humanos , Verde de Indocianina/síntese química , Verde de Indocianina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica , Células RAW 264.7 , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
17.
Front Cardiovasc Med ; 8: 667768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981738

RESUMO

Atherosclerosis is a chronic inflammatory disease. Interleukin-17-producing CD4+ T cells (Th17 cells) play important roles in the progression of atherosclerosis. However, most of the studies were focused on the advanced stage of atherosclerosis. In the current study, we investigated the roles of Th17 cells, relevant mechanisms in hyperlipidemic patients, and different stages of atherosclerotic mice. Human blood samples were collected, and percentages of Th17 cells, macrophages, and neutrophils were analyzed by flow cytometry. ApoE-/- mice were fed with high-fat diet (HFD) and sacrificed at different time points to evaluate the infiltration of inflammatory cells at different stages of atherosclerosis. Furthermore, essential mechanisms of IL-17A in atherosclerotic inflammatory milieu formation were studied in vivo by intraperitoneal injection with monoclonal anti-murine IL-17 antibody. Our study reveals the higher percentages of Th17 cells, monocytes, and neutrophils in hyperlipidemic patients compared to healthy donors. Meanwhile, we also identify an infiltration of Th17 cells in the early stage of atherosclerosis (4 weeks after HFD), which maintains at high level until late stage of atherosclerosis (20 weeks after HFD). What is more, inflammatory cells including macrophages and neutrophils were also accumulated in atherosclerotic lesions. Neutralization of IL-17 in ApoE-/- mice resulted in less infiltration of macrophages and neutrophils and smaller atherosclerotic lesions. Importantly, in accordance with what is found in the mouse model, positive correlations between Th17 cells and macrophages or neutrophils were observed in hyperlipidemic patients. In conclusion, our clinical and mouse model data together reveal a pro-atherogenic role of Th17 cells through the promotion of inflammation in hyperlipidemic conditions and different stages of atherosclerosis, which further supports the notion that IL-17 may be a therapy target for the treatment of atherosclerosis.

18.
Int J Nanomedicine ; 16: 1473-1485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33654397

RESUMO

PURPOSE: The near-infrared fluorescent dye indocyanine green (ICG) has shown great potential in the photodynamic therapy (PDT) and photothermal therapy (PTT) of cancer. However, its disadvantages of instability in aqueous solution, short half-life, and non-targeting accumulation limit the effectiveness of ICG PDT/PTT. To overcome the disadvantages of ICG in tumor treatment, we designed PEGylated-human serum albumin (PHSA)-ICG-TAT. In this nanoparticle, PEG4000, the HSA package, and nuclear targeting peptide TAT (human immunodeficiency virus 1 [HIV-1]-transactivator protein) were used to improve the water solubility of ICG, prolong the life span of ICG in vivo, and target the nuclei of tumor cells, respectively. METHODS: The PHSA-ICG-TAT was characterized in terms of morphology and size, ultraviolet spectrum, dispersion stability, singlet oxygen and cellular uptake, and colocalization using transmission electron microscopy and dynamic light scattering, and fluorescence assay, respectively. Subsequently, the anti-tumor effect of PHSA-ICG-TAT was investigated via in vitro and in vivo experiments, including cell viability, apoptosis, comet assays, histopathology, and inhibition curves. RESULTS: The designed ICG-loaded nanoparticle had a higher cell uptake rate and stronger PDT/PTT effect than free ICG. The metabolism of PHSA-ICG-TAT in normal mice revealed that there was no perceptible toxicity. In vivo imaging of mice showed that PHSA-ICG-TAT had a good targeting effect on tumors. PHSA-ICG-TAT was used for the phototherapy of tumors, and significantly suppressed the tumor growth. The tumor tissue sections showed that the cell gap and morphology of the tumor tissue had been obviously altered after treatment with PHSA-ICG-TAT. CONCLUSION: These results indicate that the PHSA-ICG-TAT had a significant therapeutic effect against tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Núcleo Celular/metabolismo , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Animais , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difusão Dinâmica da Luz , Feminino , Fluorescência , Corantes Fluorescentes/química , Humanos , Verde de Indocianina/química , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Albumina Sérica Humana/química
19.
J Mater Chem B ; 9(10): 2515-2523, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33659973

RESUMO

The precise operation of the hypoxic tumor microenvironment presents a promising way to improve treatment efficacy, in particular in tumor synergistic phototherapy. This work reports an innovative approach to build adenosine triphosphate-modified hollow ceria nanozymes (ATP-HCNPs@Ce6) that manipulate tumor hypoxia to effectively achieve drug delivery. Hollow ceria nanoparticles (HCNPs) exhibit a controllable hollow structure through varying nitric acid concentrations in the nanocomposites. Specifically, ATP modification makes HCNPs exceptionally biocompatible and stable and acts as a regulator of HCNP enzymatic activity. In the stage of drug loading, newly prepared ATP-HCNPs@Ce6 serves as an in situ oxygen-generating agent because of its ability to simulate catalase. Therefore, ATP-HCNPs@Ce6 has adjustable enzymatic properties that act like a "switch" to selectively supply oxygen in response to high levels of hydrogen peroxide expression and the slightly acidic lysosomal environment of the tumor to enhance lysosome-targeted photodynamic therapy. Moreover, the obvious anticancer effects of ATP-HCNPs@Ce6 are demonstrated in vitro and in vivo. Overall, a simple and rapid self-assembly strategy to form and modify multifunctional HCNPs is reported, which may further propel their application in the field of precision tumor treatment.


Assuntos
Materiais Biomiméticos/química , Catalase/metabolismo , Cério/química , Lisossomos/metabolismo , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Fototerapia/métodos , Trifosfato de Adenosina/química , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo
20.
Health Phys ; 120(1): 62-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086267

RESUMO

The purpose of this paper is to explore how to rapidly and easily identify depleted uranium (DU) samples under battlefield conditions and to study the factors that influence their measurement. The air-absorbed dose rate and surface contamination levels for DU samples of 2-330 g were measured using a patrol instrument and portable energy spectrometer. The results were analyzed in accordance with IAEA standards for judging radioactive substances. The energy spectra of 5-g quantities of DU samples were analyzed using a high-purity germanium gamma spectrometer, and the uranium content of 100 mg DU samples was determined with an inductively coupled plasma mass spectrometer to clarify the type and composition of the uranium. The same batches of DU samples were identified using a portable gamma-ray spectrometer. We added 0-5 g environmental soil powders at different proportions. After sealing, the spectra were collected with a detection distance of 1-5 cm for 10 min. The activities of U and U nuclides in the samples were detected with an NaI(TI) scintillation detector. The U and U mass abundances in samples were calculated from measured specific activities. The sample was determined to contain DU if the U to U ratio was below 0.00723. It is found that for detecting DU materials with a low activity, surface contamination level measurements are more effective than calculating the air-absorbed external irradiation dose rate. Hence, for low-activity samples suspected to be radioactive, a radiometer with a high sensitivity for surface contamination is recommended, and the optimal measurement distance is 1-3 cm. Under all detection conditions, U can be identified using a portable gamma spectrometer, whereas U can only be detected under certain conditions. If these nuclides can be detected simultaneously, a U to U ratio of below 0.00723 indicates the presence of DU. The main factors affecting this identification include the sample mass, sample purity, measurement distance, and measurement time. For the rapid identification of DU with a portable gamma-ray spectrometer, the mass of uranium in the sample must be more than 1 g, the measuring distance needs to be less than 1 cm, and the measuring time must be 1-10 min. It is feasible to use a portable gamma-ray spectrometer to rapidly identify the types and composition of nuclides in DU samples. The detection of U activity is a precondition for the identification of DU.


Assuntos
Armas Nucleares , Radiometria/métodos , Poluentes Radioativos do Solo/análise , Urânio/análise , Partículas alfa , Germânio , Humanos , Espectrometria de Massas/métodos , Radiometria/instrumentação , Espectrometria gama/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA