Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701597

RESUMO

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Assuntos
Antivirais , Proteínas do Capsídeo , Fosfatos , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Fosfatos/química , Fosfatos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Simulação de Acoplamento Molecular
2.
J Agric Food Chem ; 72(6): 2879-2887, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38241724

RESUMO

Tobacco mosaic virus coat protein (TMV-CP), as a potential target for the development of antiviral agents, can assist in the long-distance movement of viruses and plays an extremely important role in virus replication and propagation. This work focuses on the synthesis and the action mechanism of novel 4H-pyrazolo[3,4-d] pyrimidin-4-one hydrazine derivatives. The synthesized compounds exhibited promising antiviral activity on TMV. Specifically, compound G2 exhibited high inactivating activity (93%) toward TMV, slightly better than commercial reagent NNM (90%). The action of mechanism was further explored by employed molecular docking, molecular dynamics simulation, microscale thermophoresis, qRT-PCR, and transmission electron microscopy. Results indicated that G2 had the capability to interact with amino acid residues such as Trp352, Tyr139, and Asn73 in the active pocket of TMV-CP, creating strong hydrophobic interactions and thus obstructing the virus's self-assembly.


Assuntos
Antivirais , Vírus do Mosaico do Tabaco , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antivirais/química , Hidrazinas/farmacologia
3.
Pest Manag Sci ; 80(3): 1099-1106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37850826

RESUMO

BACKGROUND: The push-pull strategy is considered as a promising eco-friendly method for pest management. Plant volatile organic compounds (PVOCs) act as semiochemicals constitute the key factor in implementing this strategy. Benzyl alcohol and geraniol, as functional PVOCs, were reported to regulate insect behavior, showing the potential application in pest control. Using geraniol as lead, a geraniol derivative 5i with fine repellent activity was discovered in our previous work. In order to explore novel, eco-friendly aphid control agents, a series of benzyl geranate derivatives was designed and synthesized using 5i as the lead and benzyl alcohol as the active fragment. RESULTS: Benzyl alcohol was firstly evaluated to have repellent activity to Acyrthosiphon pisum. Based on this repellent fragment, a series of novel benzyl geranate derivatives was rationally designed and synthesized using a scaffold-hopping strategy. Among them, compound T9, with a binding affinity (Kd = 0.43 µm) and a substantial repellency of 64.7% against A. pisum, is the most promising compound. Molecule docking showed that hydrophobic and hydrogen-bonding interactions substantially influenced the binding affinity of compounds with ApisOBP9. Additionally, T9 exhibited low-toxicity to honeybees and ladybugs. CONCLUSION: Using a simple scaffold-hopping strategy combined with active fragment benzyl alcohol, a new derivative T9, with high aphid-repellency and low-toxicity to nontarget organisms, can be considered as a novel potential eco-friendly aphid control agent for sustainable agriculture. © 2023 Society of Chemical Industry.


Assuntos
Afídeos , Repelentes de Insetos , Animais , Monoterpenos Acíclicos , Insetos , Álcoois Benzílicos , Repelentes de Insetos/química
4.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373113

RESUMO

Strigolactones (SLs) are a class of plant hormones and rhizosphere communication signals of great interest. They perform diverse biological functions including the stimulation of parasitic seed germination and phytohormonal activity. However, their practical use is limited by their low abundance and complex structure, which requires simpler SL analogues and mimics with maintained biological function. Here, new, hybrid-type SL mimics were designed, derived from Cinnamic amide, a new potential plant growth regulator with good germination and rooting-promoting activities. Bioassay results indicated that compound 6 not only displayed good germination activity against the parasitic weed O. aegyptiaca with an EC50 value of 2.36 × 10-8 M, but also exhibited significant inhibitory activity against Arabidopsis root growth and lateral root formation, as well as promoting root hair elongation, similar to the action of GR24. Further morphological experiments on Arabidopsis max2-1 mutants revealed that 6 possessed SL-like physiological functions. Furthermore, molecular docking studies indicated that the binding mode of 6 was similar to that of GR24 in the active site of OsD14. This work provides valuable clues for the discovery of novel SL mimics.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , Germinação , Reguladores de Crescimento de Plantas/metabolismo , Lactonas/química
5.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175151

RESUMO

Ecdysone receptor (EcR) and chitinase play a critical role in the molting stage of insect pests. Each of them is considered a promising target for the development of novel insect growth regulators (IGRs). In the present paper, a total of 24 (23 novel) hexacyclic pyrazolamide derivatives were designed and synthesized by reducing the heptacycle and inserting small flexible linkers on the basis of the previously discovered dual-target compound D-27 acting simultaneously on EcR and Ostrinia furnacalis chitinase (OfChtI). Their insecticidal activities against Plutella xylostella, Spodoptera frugiperda, and Ostrinia furnacalis larvae were evaluated. The results revealed that the insecticidal activity was not significantly enhanced when the heptacycle on the pyrazole ring was reduced to a hexacycle. However, the insertion of an additional methylene spacer between the substituted phenyl ring and the amide bond can improve the insecticidal activity. Among the derivatives, the most potent compound, 6j, exhibited promising insecticidal activities against P. xylostella and S. frugiperda. Further protein binding assays and molecular docking indicated that 6j could target both EcR and OfChtI, and is a potential lead compound for IGRs. The present work provides valuable clues for the development of new dual-target IGRs.


Assuntos
Desenho de Fármacos , Insetos , Inseticidas , Hormônios Juvenis , Animais , Quitinases/antagonistas & inibidores , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Hormônios Juvenis/síntese química , Hormônios Juvenis/química , Hormônios Juvenis/farmacologia , Simulação de Acoplamento Molecular , Insetos/efeitos dos fármacos , Insetos/crescimento & desenvolvimento
6.
Curr Org Synth ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36974411

RESUMO

BACKGROUND: Downy mildew is one of the major fungi causing significant economic losses to crops. The resistance of this fungus to current fungicides is increasing and new fungicides with a unique mode of action are needed. OBJECTIVE: To find a novel pyrazole amide derivative as a potential fungicide. METHODS: A series of pyrazole-5-carboxamide derivatives containing a diaryl ether were designed and synthesized by the Intermediate derivatization method (IDM). Their fungicidal activities against Pseudoperonospora cubensis (P. cubensis, cucumber downy mildew) were evaluated in the greenhouse. RESULTS: Bioassays indicated that several compounds exhibited excellent fungicidal activity against P. cubensis in vivo. In particular, T24 (EC50 = 0.88 mg L-1) had the highest activity compared with Dimethomorph and Fluazinam and other analogues. The relationship between the activity and the structure of these derivatives was analyzed, and an accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model was established to determine that electrostatic and steric fields had important effects on the improvement of fungicidal activity. CONCLUSION: The novel pyrazole-5-carboxamide derivative T24 can be considered a potential fungicide for P. cubensis control.

7.
Pest Manag Sci ; 79(2): 760-770, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36259292

RESUMO

BACKGROUND: Aphids have been mainly controlled by traditional chemical insecticides, resulting in unamiable risk to the environment over the last decades. Push-pull strategy is regarded as a promising eco-friendly approach for aphid management through repelling aphid away and attracting their natural enemy. Methyl salicylate (MeSA), one of typical HIPVs (herbivore-induced plant volatiles), can repel aphids and attract ladybugs. Our previous studies discovered a new lead compound 3e, a salicylate-substituted carboxyl (E)-ß-farnesene derivative that had effective aphid-repellent activity. However, whether 3e has attractive activity to ladybug like MeSA is unknown. Meanwhile, to discover a new derivative for both deterring aphid and recruiting ladybug is meaningful for green control of aphids. RESULTS: Through the structural optimization of 3e, 14 new derivatives were designed and synthesized. Among them, compounds 4e and 4i had good aphid (Acyrthosiphon pisum) repellent activity, and compounds 3e, 4e and 4i had significant ladybug (Harmonia axyridis) attractive activity to males. Particularly, 4i exhibited manifest attractive effect on the females as well. Binding mechanism showed that 4i not only bound effectively with the aphid (Acyrthosiphon pisum) target ApisOBP9 thanks to its multiple hydrophobic interactions and hydrogen-bond, but also had strong binding affinity with ladybug target HaxyOBP15 due to the suitable steric space. Additionally, 4i displayed low toxicity to bee Apis mellifera. CONCLUSION: Compound 3e does exhibit attractive activity to male ladybug as MeSA. However, the new derivative 4i, with both pleasant aphid-repellent and ladybug-attraction activities, can be considered as a novel potential push-pull candidate for aphid control in sustainable agriculture. © 2022 Society of Chemical Industry.


Assuntos
Afídeos , Besouros , Repelentes de Insetos , Animais , Abelhas , Afídeos/metabolismo , Salicilatos/farmacologia , Salicilatos/metabolismo , Monoterpenos Acíclicos/farmacologia , Repelentes de Insetos/farmacologia
8.
J Agric Food Chem ; 70(37): 11792-11803, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36095120

RESUMO

Odorant-binding protein (OBP) is a potential target for developing insect behavior control agents due to its properties in transporting semiochemicals. In this study, 12 novel jasmonic acid (JA) derivatives were rationally designed and synthesized based on the binding features between Acyrthosiphon pisum OBP3 (ApisOBP3) and compound D1 [(E)-3,7-dimethylocta-2,6-dien-1-yl 2-(3-oxo-2-pentylcyclopentyl)acetate] with a binding affinity (Kd) of 26.79 µM. Most novel JA derivatives displayed better binding affinities than D1 (Kd = 1-26 µM). Among them, compound 6b [(E)-3,7-dimethylocta-2,6-dien-1-yl-2-((Z)-3-((acryloyloxy)imino)-2-pentylcyclopentyl)acetate] is the most promising compound with an excellent Kd of 1.33 µM and a significant repellent activity with repellent rates of 50-60% against A. pisum and Myzus persicae. Both hydrophobic and electrostatic interactions were found to contribute significantly to the binding of 6b to ApisOBP3. This study provides significant guidance for the rational design and efficient identification of novel aphid repellents based on aphid OBPs.


Assuntos
Afídeos , Repelentes de Insetos , Receptores Odorantes , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Afídeos/química , Ciclopentanos , Proteínas de Insetos/metabolismo , Oxilipinas , Feromônios/metabolismo , Receptores Odorantes/metabolismo
9.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144685

RESUMO

Aphids are one of the most damaging agricultural pests. For the sake of novel eco-friendly compounds with good activity for aphid control, a series of novel geranic acid esters containing substituted aromatic rings were designed by inverting ester groups of lead compounds. All compounds were characterized by HRMS, 1H-NMR, and 13C-NMR. In order to identify the effect of inversion ester groups on activity, a bioassay was conducted. The results showed that the repellent activity against Acyrthosiphon pisum (A. pisum) and the binding affinity with the odorant-binding protein 9 from A. pisum (ApisOBP9) of the compounds were increased after inversion of the ester groups. Particularly, 5f showed the best repellent activity (repellency proportion: 55.6%) and binding affinity (1/Ki: 0.49 µM). Meanwhile, the structure-activity relationships revealed that the introduction of meta-substitution of the benzene ring and halogen atoms, such as Cl and Br, facilitated the biological activity. The further molecular docking results demonstrated that hydrogen bonding interactions and hydrophobic interactions were vital for the binding affinity with ApisOBP9. Additionally, all compounds were predicted to be eco-friendly and their volatile physicochemical properties have been enhanced compared to the leads. The present results provide valuable clues for the further rational design of aphids' behavioral control agents.


Assuntos
Afídeos , Repelentes de Insetos , Animais , Benzeno , Ésteres/farmacologia , Halogênios , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Simulação de Acoplamento Molecular , Terpenos
10.
J Agric Food Chem ; 70(30): 9262-9275, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35862625

RESUMO

The introduction of active groups of natural products into the framework of pesticide molecules is an effective approach for discovering active lead compounds, and thus has been widely used in the development of new agrochemicals. In this work, a novel series of 1,2,3,4-tetrahydroquinoline derivatives containing a pyrimidine ether scaffold were designed and synthesized by the active substructure splicing method. The new compounds showed good antifungal activities against several fungi. Especially, compound 4fh displayed excellent in vitro activity against Valsa mali and Sclerotinia sclerotiorum with EC50 values of 0.71 and 2.47 µg/mL, respectively. 4fh had slightly stronger inhibitory activity (68.08% at 50 µM) against chitin synthase (CHS) than that of polyoxin D (63.84% at 50 µM) and exhibited obvious curative and protective effects on S. sclerotiorum in vivo. Thus, 4fh can be considered as a new candidate fungicide as a chitin synthase inhibitor. An accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model presented a useful direction for the further excogitation of more highly active fungicides. Molecular docking revealed that the conventional hydrogen bond mainly affected the binding affinity of 4fh with chitin synthase. The present results will provide a guidance to discover potential CHS-based fungicides for plant disease control in agriculture.


Assuntos
Quitina Sintase , Fungicidas Industriais , Antifúngicos/química , Quitina , Quitina Sintase/genética , Quitina Sintase/metabolismo , Éter , Fungicidas Industriais/química , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Quinolinas , Relação Estrutura-Atividade
11.
Front Physiol ; 13: 829766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350682

RESUMO

Harmonia axyridis is an important natural enemy that consumes many agricultural and forestry pests. It relies on a sensitive olfactory system to find prey and mates. Odorant-binding proteins (OBPs) as the first-step of recognizing volatiles, transport odors through sensillum lymph to odorant receptors (ORs). However, little is known about the molecular mechanisms of H. axyridis olfaction. In this study, four H. axyridis antenna specific OBP genes, HaxyOBP3, 5, 12, and 15, were bacterially expressed and the binding features of the four recombinant proteins to 40 substances were investigated using fluorescence competitive binding assays. Three-dimensional structure modeling and molecular docking analysis predicted the binding sites between HaxyOBPs and candidate volatiles. Developmental expression analyses showed that the four HaxyOBP genes displayed a variety of expression patterns at different development stages. The expression levels of HaxyOBP3 and HaxyOBP15 were higher in the adult stage than in the other developmental stages, and HaxyOBP15 was significantly transcriptionally enriched in adult stage. Ligand-binding analysis demonstrated that HaxyOBP3 and HaxyOBP12 only combined with two compounds, ß-ionone and p-anisaldehyde. HaxyOBP5 protein displayed binding affinities with methyl salicylate, ß-ionone, and p-anisaldehyde (Ki = 18.15, 11.71, and 13.45 µM). HaxyOBP15 protein had a broad binding profile with (E)-ß-farnesene, ß-ionone, α-ionone, geranyl acetate, nonyl aldehyde, dihydro-ß-ionone, and linalyl acetate (Ki = 4.33-31.01 µM), and hydrophobic interactions played a key role in the binding of HaxyOBP15 to these substances according to molecular docking. Taken together, HaxyOBP15 exhibited a broader ligand-binding spectrum and a higher expression in adult stage than HaxyOBP3, 5, and 12, indicating HaxyOBP15 may play a greater role in binding volatiles than other three HaxyOBPs. The results will increase our understanding of the molecular mechanism of H. axyridis olfaction and may also result in new management strategies (attractants/repellents) that increase the biological control efficacy of H. axyridis.

12.
Pest Manag Sci ; 77(9): 3910-3920, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33871901

RESUMO

BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) play an increasingly important role in controlling plant diseases. However, the similar structures of SDHIs result in rapid development of cross-resistance development and a clear bottleneck of poor activity against oomycetes, therefore the need to seek new SDHI fungicides with novel structures is urgent. RESULTS: Innovative pyrazolyl oxime ethers were designed by replacing amide with oxime ether based on the succinate dehydrogenase (SDH) structure, and 19 pairs of Z- and E-isomers were efficiently prepared for the discovery of SDHI compounds with a novel bridge. Their biological activities against four fungi and two oomycetes were evaluated, and substantial differences were observed between the Z- and E- isomers of the title compounds. Furthermore, most of these compounds exhibited remarkable activities against Rhizoctonia solani with EC50 values of less than 10 mg L-1 in vitro, and bioassay in vivo further confirmed that E-I-6 exhibited good protective efficacy (76.12%) at 200 mg L-1 . In addition, Z-I-12 provided better activity against the oomycetes Pythium aphanidermatum and Phytophthora capsici (EC50  = 1.56 and 0.93 mg L-1 ) than those of boscalid. Moreover, E-I-12 exhibited excellent SDH inhibition (IC50  = 0.21 mg L-1 ) thanks to its good binding ability to the SDH by hydrogen-bonding interactions, π-cation interaction and hydrophobic interactions. CONCLUSION: Novel pyrazolyl oxime ethers have the potential as SDHI compounds for future development, and the strategy of replacing an amide bond with oxime ether may offer an alternative option in SDHI fungicide discovery.


Assuntos
Fungicidas Industriais , Oomicetos , Antifúngicos/farmacologia , Éteres/farmacologia , Fungicidas Industriais/farmacologia , Oximas/farmacologia , Rhizoctonia , Relação Estrutura-Atividade , Succinato Desidrogenase/metabolismo
13.
J Mol Graph Model ; 98: 107586, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32200280

RESUMO

The nicotinic acetylcholine receptor (nAChR), as an attractive target acted by neonicotinoid insecticides, was paid more and more attention in recent years. The mode of action study on neonicotinoids toward nAChR would present significant guidance on rational molecular design to further discover new insecticides. Four neonicotinoids including commercial agents imidacloprid and flupyradifurone, two previously synthesized compounds guadipyr and ethoxythiagua in our lab were docked into a putative model of aphid and honeybee nAChR, respectively, to explore the binding and selective mechanism of neonicotinoids in this study. The obtained results showed that a traditional H-bond interaction, as a dominating electrostatic driving force, always conferred the binding of four neonicotinoids not only to target aphid receptor but also to non-target honeybee one. Four neonicotinoids almost showed uniformly binding conformation into aphid receptor, namely, a vital electronegative nitro or butenolide group to be conserved to nestle in a non-selective ß subunit. The bioassay study on Aphis gossypii also confirmed to be their excellent insecticidal activity with a lower LC50 value of 0.028-3.2 µg/mL. However, to non-target honeybee receptor, this special nitro or butenolide group of four neonicotinoids was no longer only binding to the non-selective ß subunit of receptor. Three among four neonicotinoids like flupyradifurone, guadipyr and ethoxythiagua as a case of low bee-toxicity reported in the previous study, were happened to display an exactly inverted binding orientation, namely, an unusual electronegative group captured another selective α subunit. However, this high bee-toxicity imidacloprid remained one conserved conformation into the non-selective ß subunit as that seen from aphid receptor. This unique molecular mechanism of selectively binding to honeybee receptor, particularly to different subunit, was proposed cautiously to be one of factor determined the distinctive bee-toxicity for four neonicotinoids. These findings on the diverse mode of action for neonicotinoids to target and non-target receptor would be helpful for on novel insecticides design with high bioactivity as well as good selectivity based on the structure of different insect nAChR.


Assuntos
Afídeos , Inseticidas , Receptores Nicotínicos , Animais , Abelhas , Insetos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade
14.
Pest Manag Sci ; 76(7): 2465-2472, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32061021

RESUMO

BACKGROUND: The aphid alarm pheromone, (E)-ß-farnesene (EßF), is a natural product secreted from the aphid cornicle as a signal to warn companions of danger. Odorant binding proteins (OBPs) are the vital targets in insect signal transduction pathways. To improve bioactivity of EßF as more economic and stable aphid control agents, EßF derivatives containing an active substructure, salicylic acid moiety, were designed, synthesized, and evaluated for their bioactivities in a structure-function study under laboratory conditions. RESULTS: EßF derivatives, (E)-3,7-dimethylocta-2,6-dien-1-yl-2-hydroxy-3-methylbenzoate and (E)-3,7-dimethylocta-2,6-dien-1-yl-2-hydroxy-3-methoxybenzoate showed outstanding aphid-repellent activity at a dose of 5 µg against Acyrthosiphon pisum (repellency proportions of 67.3% and 71.2%, respectively) and Myzus persicae (repellency proportions of 80.0% and 74.4%, respectively) in laboratory. EßF and most of its derivatives bound strongly to ApisOBP9 with a higher affinity than those of the reported potential targets AphisOBP3 and ApisOBP7. The binding affinities to these three ApisOBPs were generally consistent with the in vivo aphid-repellent activity. A molecular docking study suggested that the hydrophobic effect was crucial for the interactions between the derivatives and the OBPs. CONCLUSION: New EßF derivatives containing salicylic acid moiety and their repellent activity, binding mechanism with three potential OBPs are presented. A new OBP, ApisOBP9, was characterized as a potential EßF and EßF derivatives binding protein for the first time. The hydrophobic nature of these analogues is responsible for their activity. Two analogues 3b and 3e with outstanding aphid-repellent activity could be new leads for aphid control agents.


Assuntos
Afídeos , Agroquímicos , Animais , Simulação de Acoplamento Molecular , Feromônios , Ácido Salicílico , Sesquiterpenos
15.
J Mol Model ; 24(3): 70, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29488109

RESUMO

Odorant-binding proteins (OBPs) play an important role as ligand-transfer filters in olfactory recognition in insects. (E)-ß-farnesene (EBF) is the main component of the aphid alarm pheromone and could keep aphids away from crops to prevent damage. Computational insight into the molecular binding mode of EBF analogs containing a heterocycle based on the structure of Megoura viciae OBP 3 (MvicOBP3) was obtained by molecular docking and molecular dynamics simulations. The results showed that high affinity EBF analogs substituted with an aromatic ring present a unique binding conformation in the surface cavity of MvicOBP3. A long EBF chain was located inside the cavity and was surrounded by many hydrophobic residues, while the substituted aromatic ring was exposed to the outside due to limitations from the formation of multiple hydrogen bonds. However, the low activity EBF analogs displayed an exactly inverted binding pose, with EBF loaded on the external side of the protein cavity. The affinity of the recently synthesized EBF analogs containing a triazine ring was evaluated in silico based on the binding modes described above and in vitro through fluorescence competitive binding assay reported later. Compound N1 not only showed a similar binding conformation to that of the high affinity analogs but was also found to have a much higher docking score and binding affinity than the other analogs. In addition, the docking score results correlated well with the predicted logP values for these EBF analogs, suggesting highly hydrophobic interactions between the protein and ligand. These studies provide an in silico screening model for the binding affinity of EBF analogs in order to guide their rational design based on aphid OBPs.


Assuntos
Afídeos/química , Receptores Odorantes/química , Sesquiterpenos/química , Animais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Odorantes/metabolismo , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA