Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1155601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124209

RESUMO

Background and purpose: While flecainide is now an accepted treatment for arrhythmias associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), its mechanism of action remains controversial. In studies on myocytes from CPVT mice, inhibition of proarrhythmic Ca2+ waves was initially attributed to a novel action on the type-2 ryanodine receptor (RyR2). However, subsequent work on wild type (WT) myocytes questioned the conclusion that flecainide has a direct action on RyR2. In the present study, the effects of flecainide were compared in intact and permeabilized WT myocytes. Experimental approach: Intracellular Ca2+ was measured using confocal microscopy in intact or saponin permeabilized adult rat ventricular myocytes (ARVM). In some experiments on permeabilized cells, flecainide was studied following partial inhibition of the sarcoplasmic reticulum (SR) counter-current. Key results: Flecainide induced sustained changes Ca2+ sparks and waves in permeabilized ARVM, which were comparable to those reported in intact or permeabilized myocytes from CPVT mice. However, a relatively high level of flecainide (25 µM) was required to induce these effects. Inhibition of the SR counter-current potentiated the effects of flecainide on SR Ca2+ waves. In intact field stimulated ARVM, prolonged exposure to 15 µM flecainide decreased wave frequency but RyR2 dependent effects on Ca2+ sparks were absent; higher drug concentrations blocked field stimulation, consistent with inhibition of Nav1.5. Conclusions and implications: In intact ARVM, the absence of effects on Ca2+ sparks suggests that the intracellular flecainide concentration was insufficient to influence RyR2. Wave inhibition in intact ARVM may reflect secondary effects of Nav1.5 inhibition. Potentiation of flecainide's action by counter-current inhibition can be explained if transient polarization of the SR membrane during SR Ca2+ release facilitates its action on RyR2.

2.
Methods ; 193: 27-37, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33059034

RESUMO

Nanometre-scale cellular information obtained through super-resolution microscopies are often unaccompanied by functional information, particularly transient and diffusible signals through which life is orchestrated in the nano-micrometre spatial scale. We describe a correlative imaging protocol which allows the ubiquitous intracellular second messenger, calcium (Ca2+), to be directly visualised against nanoscale patterns of the ryanodine receptor (RyR) Ca2+ channels which give rise to these Ca2+ signals in wildtype primary cells. This was achieved by combining total internal reflection fluorescence (TIRF) imaging of the elementary Ca2+ signals, with the subsequent DNA-PAINT imaging of the RyRs. We report a straightforward image analysis protocol of feature extraction and image alignment between correlative datasets and demonstrate how such data can be used to visually identify the ensembles of Ca2+ channels that are locally activated during the genesis of cytoplasmic Ca2+ signals.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fatores de Tempo
3.
JACC Basic Transl Sci ; 4(4): 509-523, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31468006

RESUMO

This study aimed to identify a mechanism for statin-induced myopathy that explains its prevalence and selectivity for skeletal muscle, and to understand its interaction with moderate exercise. Statin-associated adverse muscle symptoms reduce adherence to statin therapy; this limits the effectiveness of statins in reducing cardiovascular risk. The issue is further compounded by perceived interactions between statin treatment and exercise. This study examined muscles from individuals taking statins and rats treated with statins for 4 weeks. In skeletal muscle, statin treatment caused dissociation of the stabilizing protein FK506 binding protein (FKBP12) from the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, the ryanodine receptor 1, which was associated with pro-apoptotic signaling and reactive nitrogen species/reactive oxygen species (RNS/ROS)-dependent spontaneous SR Ca2+ release events (Ca2+ sparks). Statin treatment had no effect on Ca2+ spark frequency in cardiac myocytes. Despite potentially deleterious effects of statins on skeletal muscle, there was no impact on force production or SR Ca2+ release in electrically stimulated muscle fibers. Statin-treated rats with access to a running wheel ran further than control rats; this exercise normalized FKBP12 binding to ryanodine receptor 1, preventing the increase in Ca2+ sparks and pro-apoptotic signaling. Statin-mediated RNS/ROS-dependent destabilization of SR Ca2+ handling has the potential to initiate skeletal (but not cardiac) myopathy in susceptible individuals. Importantly, although exercise increases RNS/ROS, it did not trigger deleterious statin effects on skeletal muscle. Indeed, our results indicate that moderate exercise might benefit individuals who take statins.

4.
ACS Nano ; 13(2): 2143-2157, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30715853

RESUMO

Nanodomains are intracellular foci which transduce signals between major cellular compartments. One of the most ubiquitous signal transducers, the ryanodine receptor (RyR) calcium channel, is tightly clustered within these nanodomains. Super-resolution microscopy has previously been used to visualize RyR clusters near the cell surface. A majority of nanodomains located deeper within cells have remained unresolved due to limited imaging depths and axial resolution of these modalities. A series of enhancements made to expansion microscopy allowed individual RyRs to be resolved within planar nanodomains at the cell periphery and the curved nanodomains located deeper within the interiors of cardiomyocytes. With a resolution of ∼ 15 nm, we localized both the position of RyRs and their individual phosphorylation for the residue Ser2808. With a three-dimensional imaging protocol, we observed disturbances to the RyR arrays in the nanometer scale which accompanied right-heart failure caused by pulmonary hypertension. The disease coincided with a distinct gradient of RyR hyperphosphorylation from the edge of the nanodomain toward the center, not seen in healthy cells. This spatial profile appeared to contrast distinctly from that sustained by the cells during acute, physiological hyperphosphorylation when they were stimulated with a ß-adrenergic agonist. Simulations of RyR arrays based on the experimentally determined channel positions and phosphorylation signatures showed how the nanoscale dispersal of the RyRs during pathology diminishes its intrinsic likelihood to ignite a calcium signal. It also revealed that the natural topography of RyR phosphorylation could offset potential heterogeneity in nanodomain excitability which may arise from such RyR reorganization.


Assuntos
Canais de Cálcio/metabolismo , Nanoestruturas/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Cálcio/metabolismo , Humanos , Microscopia , Fosforilação , Transdução de Sinais/efeitos dos fármacos
5.
Br J Pharmacol ; 175(6): 938-952, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29278865

RESUMO

BACKGROUND AND PURPOSE: Statins are amongst the most widely prescribed drugs for those at risk of cardiovascular disease, lowering cholesterol levels by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Although effective at preventing cardiovascular disease, statin use is associated with muscle weakness, myopathies and, occasionally, fatal rhabdomyolysis. As simvastatin, a commonly prescribed statin, promotes Ca2+ release from sarcoplasmic reticulum (SR) vesicles, we investigated if simvastatin directly activates skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. EXPERIMENTAL APPROACH: RyR1 and RyR2 single-channel behaviour was investigated after incorporation of sheep cardiac or mouse skeletal SR into planar phospholipid bilayers under voltage-clamp conditions. LC-MS was used to monitor the kinetics of interconversion of simvastatin between hydroxy-acid and lactone forms during these experiments. Cardiac and skeletal myocytes were permeabilised to examine simvastatin modulation of SR Ca2+ release. KEY RESULTS: Hydroxy acid simvastatin (active at HMG-CoA reductase) significantly and reversibly increased RyR1 open probability (Po) and shifted the distribution of Ca2+ spark frequency towards higher values in skeletal fibres. In contrast, simvastatin reduced RyR2 Po and shifted the distribution of spark frequency towards lower values in ventricular cardiomyocytes. The lactone pro-drug form of simvastatin (inactive at HMG-CoA reductase) also activated RyR1, suggesting that the HMG-CoA inhibitor pharmacophore was not responsible for RyR1 activation. CONCLUSION AND IMPLICATIONS: Simvastatin interacts with RyR1 to increase SR Ca2+ release and thus may contribute to its reported adverse effects on skeletal muscle. The ability of low concentrations of simvastatin to reduce RyR2 Po may also protect against Ca2+ -dependent arrhythmias and sudden cardiac death.


Assuntos
Cálcio/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Sinvastatina/análogos & derivados , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Ovinos , Sinvastatina/farmacologia
6.
Antioxid Redox Signal ; 27(3): 117-132, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27649969

RESUMO

AIMS: In the heart, ß1-adrenergic signaling involves cyclic adenosine monophosphate (cAMP) acting via both protein kinase-A (PKA) and exchange protein directly activated by cAMP (Epac): a guanine nucleotide exchange factor for the small GTPase Rap1. Inhibition of Epac-Rap1 signaling has been proposed as a therapeutic strategy for both cancer and cardiovascular disease. However, previous work suggests that impaired Rap1 signaling may have detrimental effects on cardiac function. The aim of the present study was to investigate the influence of Epac2-Rap1 signaling on the heart using both in vivo and in vitro approaches. RESULTS: Inhibition of Epac2 signaling induced early afterdepolarization arrhythmias in ventricular myocytes. The underlying mechanism involved an increase in mitochondrial reactive oxygen species (ROS) and activation of the late sodium current (INalate). Arrhythmias were blocked by inhibition of INalate or the mitochondria-targeted antioxidant, mitoTEMPO. In vivo, inhibition of Epac2 caused ventricular tachycardia, torsades de pointes, and sudden death. The in vitro and in vivo effects of Epac2 inhibition were mimicked by inhibition of geranylgeranyltransferase-1, which blocks interaction of Rap1 with downstream targets. INNOVATION: Our findings show for the first time that Rap1 acts as a negative regulator of mitochondrial ROS production in the heart and that impaired Epac2-Rap1 signaling causes arrhythmias due to ROS-dependent activation of INalate. This has implications for the use of chemotherapeutics that target Epac2-Rap1 signaling. However, selective inhibition of INalate provides a promising strategy to prevent arrhythmias caused by impaired Epac2-Rap1 signaling. CONCLUSION: Epac2-Rap1 signaling attenuates mitochondrial ROS production and reduces myocardial arrhythmia susceptibility. Antioxid. Redox Signal. 27, 117-132.


Assuntos
Arritmias Cardíacas/metabolismo , Canais de Cálcio Tipo L/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células HEK293 , Humanos , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
7.
Sci Signal ; 8(398): ra101, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26462734

RESUMO

Ca(2+) release from the Golgi apparatus regulates key functions of the organelle, including vesicle trafficking. We found that the Golgi apparatus was the source of prolonged Ca(2+) release events that originated near the nuclei of primary cardiomyocytes. Golgi Ca(2+) release was unaffected by depletion of sarcoplasmic reticulum Ca(2+), and disruption of the Golgi apparatus abolished Golgi Ca(2+) release without affecting sarcoplasmic reticulum function, suggesting functional and spatial independence of Golgi and sarcoplasmic reticulum Ca(2+) stores. ß1-Adrenoceptor stimulation triggers the production of the second messenger cAMP, which activates the Epac family of Rap guanine nucleotide exchange factors and the kinase PKA (protein kinase A). Phosphodiesterases (PDEs), including those in the PDE3 and PDE4 families, degrade cAMP. Activation of ß1-adrenoceptors stimulated Golgi Ca(2+) release, an effect that required activation of Epac, PKA, and the kinase CaMKII. Inhibition of PDE3s or PDE4s potentiated ß1-adrenergic-induced Golgi Ca(2+) release, which is consistent with compartmentalization of cAMP signaling near the Golgi apparatus. Interventions that stimulated Golgi Ca(2+) release appeared to increase the trafficking of vascular endothelial growth factor receptor-1 (VEGFR-1) from the Golgi apparatus to the surface membrane of cardiomyocytes. In cardiomyocytes from rats with heart failure, decreases in the abundance of PDE3s and PDE4s were associated with increased Golgi Ca(2+) release events. These data suggest that the Golgi apparatus is a focal point for ß1-adrenergic-stimulated Ca(2+) signaling and that the Golgi Ca(2+) store functions independently from the sarcoplasmic reticulum and the global Ca(2+) transients that trigger contraction in cardiomyocytes.


Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Complexo de Golgi/ultraestrutura , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Immunoblotting , Isoproterenol/farmacologia , Masculino , Microscopia Confocal , Microscopia Eletrônica , Monocrotalina , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Ratos Wistar , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia
8.
Am J Respir Crit Care Med ; 186(7): 648-56, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22822026

RESUMO

RATIONALE: Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. OBJECTIVES: To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. METHODS: Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. MEASUREMENTS AND MAIN RESULTS: CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. CONCLUSIONS: Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.


Assuntos
Arritmias Cardíacas/etiologia , Intoxicação por Monóxido de Carbono/complicações , Monóxido de Carbono/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Acetanilidas/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Monóxido de Carbono/efeitos adversos , Intoxicação por Monóxido de Carbono/fisiopatologia , Técnicas de Cultura de Células , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Masculino , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Piperazinas/uso terapêutico , Ranolazina , Ratos , Ratos Wistar , Canais de Sódio Disparados por Voltagem/fisiologia
9.
Am J Physiol Heart Circ Physiol ; 302(11): H2381-95, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22427523

RESUMO

Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.


Assuntos
Arritmias Cardíacas/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/complicações , Disfunção Ventricular Direita/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Eletrocardiografia , Masculino , Modelos Animais , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Retículo Sarcoplasmático/metabolismo
10.
Cell Calcium ; 47(4): 378-86, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20227109

RESUMO

Sepsis is associated with ventricular dysfunction and increased incidence of atrial and ventricular arrhythmia however the underlying pro-arrhythmic mechanisms are unknown. Serum levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are elevated during sepsis and affect Ca2+ regulation. We investigated whether pro-inflammatory cytokines disrupt cellular Ca2+ cycling leading to reduced contractility, but also increase the probability of pro-arrhythmic spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). Isolated rat ventricular myocytes were exposed to TNF-alpha (0.05 ng ml(-1)) and IL-1beta (2 ng ml(-1)) for 3 hr and then loaded with fura-2 or fluo-3 to record the intracellular Ca2+ concentration ([Ca2+](i)). Cytokine treatment decreased the amplitude of the spatially averaged Ca2+ transient and the associated contraction, induced asynchronous Ca2+ release during electrical stimulation, increased the frequency of localized Ca2+ release events, decreased the SR Ca2+ content and increased the frequency of spontaneous Ca2+ waves at any given cytoplasmic Ca2+. These data suggest that TNF-alpha and IL-1beta increase the SR Ca2+ leak from the SR, which contributes to the depressed Ca2+ transient and contractility. Increased susceptibility to spontaneous SR Ca2+ release may contribute to arrhythmias in sepsis as the resulting Ca2+ extrusion via NCX is electrogenic, leading to cell depolarisation.


Assuntos
Arritmias Cardíacas/imunologia , Interleucina-1beta/farmacologia , Células Musculares/efeitos dos fármacos , Sepse/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Arritmias Cardíacas/complicações , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/imunologia , Células Cultivadas , Suscetibilidade a Doenças , Ventrículos do Coração/patologia , Masculino , Células Musculares/imunologia , Células Musculares/metabolismo , Células Musculares/patologia , Contração Miocárdica/imunologia , Ratos , Ratos Wistar , Retículo Sarcoplasmático/metabolismo , Sepse/complicações
11.
J Mol Cell Cardiol ; 48(2): 293-301, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19835880

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is linked to mutations in the cardiac ryanodine receptor (RyR2) or calsequestrin. We recently found that the drug flecainide inhibits RyR2 channels and prevents CPVT in mice and humans. Here we compared the effects of flecainide and tetracaine, a known RyR2 inhibitor ineffective in CPVT myocytes, on arrhythmogenic Ca(2+) waves and elementary sarcoplasmic reticulum (SR) Ca(2+) release events, Ca(2+) sparks. In ventricular myocytes isolated from a CPVT mouse model, flecainide significantly reduced spark amplitude and spark width, resulting in a 40% reduction in spark mass. Surprisingly, flecainide significantly increased spark frequency. As a result, flecainide had no significant effect on spark-mediated SR Ca(2+) leak or SR Ca(2+) content. In contrast, tetracaine decreased spark frequency and spark-mediated SR Ca(2+) leak, resulting in a significantly increased SR Ca(2+) content. Measurements in permeabilized rat ventricular myocytes confirmed the different effects of flecainide and tetracaine on spark frequency and Ca(2+) waves. In lipid bilayers, flecainide inhibited RyR2 channels by open state block, whereas tetracaine primarily prolonged RyR2 closed times. The differential effects of flecainide and tetracaine on sparks and RyR2 gating can explain why flecainide, unlike tetracaine, does not change the balance of SR Ca(2+) fluxes. We suggest that the smaller spark mass contributes to flecainide's antiarrhythmic action by reducing the probability of saltatory wave propagation between adjacent Ca(2+) release units. Our results indicate that inhibition of the RyR2 open state provides a new therapeutic strategy to prevent diastolic Ca(2+) waves resulting in triggered arrhythmias, such as CPVT.


Assuntos
Arritmias Cardíacas/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Flecainida/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Tetracaína/farmacologia
12.
Cardiovasc Res ; 70(3): 475-85, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16624262

RESUMO

OBJECTIVE: In vitro experiments have shown that the ryanodine receptor-2 (RyR2) central domain peptide DPc10 (Gly(2460)-Pro(2495)) mimics channel dysfunction associated with catecholaminergic polymorphic ventricular tachycardia (CPVT) by acting competitively to reduce stabilizing interactions between the N-terminal and central domains. In the present study, DPc10 was used as a tool to establish an adult cell model of the disease and to analyse the underlying mechanisms. METHODS: Rat ventricular myocytes were permeabilized with saponin and perfused with solutions approximating the intracellular milieu containing fluo-3. Sarcoplasmic reticulum (SR) Ca(2+) release was detected using confocal microscopy. DPc10 (10 or 50 microM) was compared with 0.2 mM caffeine, which is known to activate RyR2 and to facilitate Ca(2+)-induced Ca(2+) release (CICR). RESULTS: Introduction of DPc10 induced a transient increase in spark frequency and a sustained rise in resting [Ca(2+)]. Under conditions causing initial Ca(2+) overload of the SR, DPc10 reduced the frequency and amplitude of spontaneous, propagated Ca(2+) release (SPCR). Following equilibration with 10microM DPc10, the cytosolic [Ca(2+)] threshold for SPCR was markedly reduced and the proportion of spontaneously active cells increased. Caffeine induced a similar, transient increase in spark frequency and a reduction in the [Ca(2+)] threshold for SPCR. However, unlike DPc10, caffeine increased SPCR frequency and had no sustained effect on resting [Ca(2+)]. These results suggest that the net effect of DPc10 (and CPVT mutations) on RyR2 function in situ is not only to increase the sensitivity to CICR as caffeine does, but also to potentiate Ca(2+) leakage from the SR. As SPCR can trigger delayed after-depolarisations, the decrease in [Ca(2+)] threshold may contribute to arrhythmias in CPVT patients during exercise or stress.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Fragmentos de Peptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Cafeína/farmacologia , Células Cultivadas , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos
13.
Circ Res ; 96(1): 82-90, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15569829

RESUMO

Confocal microscopy was used to study the properties of nuclear Ca2+ regulation in adult ventricular myocytes. Prolonged nuclear Ca2+ release (PNCR) events were identified in both intact and permeabilized rat myocytes. PNCR occurred spontaneously and was restricted to localized regions at the ends of the elongated nuclei. Typically, PNCR took the form of a rapid rise in [Ca2+] followed by a maintained plateau. The mean duration of PNCR (1.78+/-0.19 seconds) was markedly greater than the half decay time for cytosolic Ca2+ sparks (31.2+/-0.56 ms) obtained under the same conditions. The PNCR width at half maximum amplitude (5.0+/-0.2 microm) was also significantly greater than that of cytosolic Ca2+ sparks (2.6+/-0.05 microm) obtained under the same conditions. Experiments involving the use of syto-11 to accurately locate the nuclei demonstrated that PNCR originates from the nuclear envelope or a closely associated structure. The spatial spread of PNCR was asymmetrical, with greater diffusion of Ca2+ toward the center of the nucleus than the cytosol. Both PNCR and Ca2+ sparks were abolished by interventions that deplete SR Ca2+ stores or inhibit RYR activation. Experiments on intact, electrically stimulated cells revealed that diffusion of Ca2+ from the ends of the nucleus toward the center is a prominent feature of the nucleoplasmic Ca2+ transient. The possibility that recruitment of Ca2+ release sites involved in PNCR might influence the temporal and spatial characteristics of the nucleoplasmic [Ca2+] transient is considered.


Assuntos
Sinalização do Cálcio/fisiologia , Núcleo Celular/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/metabolismo , Difusão , Estimulação Elétrica , Ventrículos do Coração/citologia , Hipertrofia , Microscopia Confocal , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Saponinas/farmacologia , Fatores de Tempo
14.
Cardiovasc Res ; 65(1): 167-76, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15621044

RESUMO

OBJECTIVE: Previous work suggests that modification of sarcoplasmic reticulum (SR) function may contribute to the cardioprotective effect of halothane during ischaemia and reperfusion. The aim of this study was to investigate the effects of halothane on spontaneous Ca(2+) release from the sarcoplasmic reticulum (Ca(2+) sparks and waves). METHODS: Rat atrial myocytes were permeabilized with saponin and perfused with solutions approximating to the intracellular milieu and containing fluo-3. SR Ca(2+) release was detected using confocal microscopy. RESULTS: In the presence of 5 mM ATP, halothane (0.25-2 mM) had no significant effect on the amplitude or frequency of spontaneous Ca(2+) waves. However, in the presence of 0.05 mM ATP, halothane (0.25-2 mM) induced a concentration-dependent decrease in the amplitude and an increase in the frequency of spontaneous Ca(2+) waves, e.g., 1 mM halothane decreased the amplitude by 34.7+/-3.5% (n=9) and increased the frequency by 67+/-19.9% (n=7). In the presence of 5 mM ATP, 1 mM halothane had no significant effect on the amplitude or frequency of Ca(2+) sparks. When [ATP] was reduced to 0.05 mM, Ca(2+) spark frequency decreased by 67.9+/-14% and the amplitude increased by 27.5+/-4.9% (n=13). Subsequent introduction of halothane (0.5-1 mM) induced a transient burst of Ca(2+) sparks, consistent with ryanodine receptor (RyR) activation. Further experiments showed that the decrease in Ca(2+) spark frequency following ATP depletion was associated with a progressive increase in the SR Ca(2+) content over 1-2 min. This rise in SR Ca(2+) content did not occur when 1 mM halothane was present during ATP depletion. CONCLUSIONS: These data suggest that the sensitivity of the RyR to activation by halothane increases at low [ATP]. In metabolically impaired cells, halothane would be expected to lessen any rise in SR Ca(2+) content and to reduce the amplitude of spontaneous Ca(2+) release. These effects of halothane are considered in relation to the events that occur during ischaemia and reperfusion.


Assuntos
Trifosfato de Adenosina/metabolismo , Anestésicos/farmacologia , Cálcio/metabolismo , Halotano/farmacologia , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Átrios do Coração , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Retículo Sarcoplasmático/efeitos dos fármacos
15.
Basic Res Cardiol ; 99(2): 133-41, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14963671

RESUMO

METHODS: Both isolated perfused hearts and isolated ventricular myocytes from GK and matched control Wistar rat hearts were studied. Percent myocyte twitch shortening (%TS) and corresponding intracellular calcium transients (indo-1 fluorescence ratio, R) were measured over a range of stimulation frequencies (0.5-2.5 Hz; 32 degrees C, n = 16-24 cells). In isolated Langendorff-perfused hearts, we measured systolic LV pressure (LVP(max)), left ventricular end diastolic pressure (LVEDP), maximal rate of LV pressure rise (LV dP/dt(max)) and fall (LV dP/dt(min)) and isovolumic LV relaxation (exponential time constant, T) both at baseline and during brief (10 minutes) hypoxia. RESULTS: The %TS and corresponding indo-1 R were similar between GK and control myocytes at all stimulation frequencies (e.g. at 2.5 Hz: % TS = 8.6 +/- 0.77 and 8.2 +/- 0.19; R = 0.19 +/- 0.009 and 0.18 +/- 0.018, GK and control respectively, P = NS). Similarly, there were no significant differences in baseline LVP(max) (129 +/- 6.2 and 135 +/- 9.6 mmHg; GK and control respectively, P = NS), LV dP/dt(max) (3169.5 +/- 165.80 and 3390.6 +/- 232.60 mmHg/s; GK and control respectively, P = NS), LV dP/dt(min) or T (24 +/- 0.7 and 25 +/- 0.6 ms, GK and control respectively, P = NS). During 10 min hypoxia, LV dP/dt(max) decreased significantly more, and LVEDP and T increased significantly more, in GK compared to control hearts (LV dP/dt(max): 668.90 +/- 32.8 versus 1027.10 +/- 84.0 mmHg/s; LVEDP: 21.4 +/- 4.3 versus 11.6 +/- 0.6 mmHg; T: 102 +/- 13.8 versus 56 +/- 3.0 ms; GK versus control respectively; all P < 0.05). These abnormalities in GK hearts were reversed with acute addition of insulin (0.01 i. u./ml) to the perfusion buffer. CONCLUSION: The GK model of Type II diabetes displays a mild cardiomyopathy evident as exaggerated diastolic dysfunction during hypoxia. The mechanism is likely to involve substrate deficiency. Experimental study of cardiac function in the diabetic heart has focussed mostly on models of Type I diabetes. We studied cardiac function in the Goto-Kakizaki (GK) rat, an inbred model of spontaneous non-obese, Type II diabetes.


Assuntos
Angiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Coração/fisiopatologia , Ratos Endogâmicos , Animais , Coração/efeitos dos fármacos , Hipóxia/fisiopatologia , Insulina/farmacologia , Miócitos Cardíacos , Oxigênio/farmacologia , Ratos , Ratos Wistar
16.
J Physiol ; 539(Pt 3): 767-77, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11897848

RESUMO

The effects of phosphocreatine (PCr) on sarcoplasmic reticulum (SR) Ca(2+) regulation were investigated in saponin-permeabilized rat ventricular myocytes. Cells were perfused continuously with weakly Ca(2+)-buffered solutions approximating to the intracellular milieu. Ca(2+) release from the SR was detected using Fura-2 or Fluo-3. Withdrawal of PCr reduced the frequency of spontaneous Ca(2+) release by 12.8 +/- 3.4 % (n = 9) and the amplitude of the spontaneous Ca(2+) transient by 17.4 +/- 3.1 % (n = 9). Stepwise reductions in [PCr] progressively increased the time for the spontaneous Ca(2+) transient to rise from 25 to 100 % of the maximum value (TP75) and to fall by 75 % of the peak level (DT75). Following complete PCr withdrawal, the TP75 and the DT75 were 147.1 +/- 13.2 and 174.8 +/- 23.2 % of the control values, respectively. Experiments involving confocal microscopy showed that PCr withdrawal decreased the propagation velocity of spontaneous Ca(2+) waves. PCr withdrawal also reduced the frequency and amplitude, but increased the duration of spontaneous Ca(2+) sparks. Rapid application of 20 mM caffeine was used to assess the SR Ca(2+) content at the point of spontaneous Ca(2+) release. In the absence of PCr, the amplitude of the caffeine-induced Ca(2+) transient was 18.4 +/- 2.7 % (n = 9) lower than in the presence of 10 mM PCr. This suggests that PCr withdrawal reduces the maximum SR Ca(2+) content that can be sustained before spontaneous Ca(2+) release occurs. These results suggest that local ADP buffering by PCr is essential for normal Ca(2+) regulation by the SR. Prolongation of the descending phase of the spontaneous Ca(2+) transient is consistent with a reduction in the efficiency of the SR Ca(2+) pump due to ADP accumulation. The fact that spontaneous Ca(2+) release occurs at a lower SR Ca(2+) content in the absence of PCr suggests that the Ca(2+) release mechanism may also be affected. These effects may be of relevance in circumstances where PCr depletion and Ca(2+) overload occur, such as myocardial ischaemia or anoxia.


Assuntos
Cálcio/metabolismo , Cardiotônicos/farmacologia , Miocárdio/metabolismo , Fosfocreatina/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Separação Celular , Microscopia Confocal , Concentração Osmolar , Permeabilidade/efeitos dos fármacos , Ratos , Saponinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA