Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(38): e2304046, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269216

RESUMO

Chiral sensors have attracted growing interest due to their application in health monitoring. However, rational design of wearable logic chiral sensors remains a great challenge. In this work, a dual responsive chiral sensor RT@CDMOF is prepared through in situ self-assembly of chiral γ-cyclodextrin metal-organic framework (CDMOF), rhodamine 6G hydrazide (RGH), and tetracyanovinylindane (TCN). The embedded RGH and TCN inherit the chirality of host CDMOF, producing dual changes both in fluorescence and reflectance. RT@CDMOF is explored as a dual channel sensor for chiral discrimination of lactate enantiomers. Comprehensive mechanistic studies reveal the chiral binding process, and carboxylate dissociation is confirmed by impedance and solid-state 1 H nuclear magnetic resonance (NMR). A flexible membrane sensor is successfully fabricated based on RT@CDMOF for wearable health monitoring. Practical evaluation confirms the potential of fabricated membrane sensor in point-of-care health monitoring by indexing the exercise intensity. Based on above, a chiral IMPLICATION logic unit can be successfully achieved, demonstrating the promising potential of RT@CDMOF in design and assembly of novel smart devices. This work may open a new avenue to the rational design of logic chiral sensors for wearable health monitoring applications.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , Dispositivos Eletrônicos Vestíveis , Estereoisomerismo , Ácidos Carboxílicos
2.
Chemosphere ; 155: 292-299, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27131449

RESUMO

With the increased detections of commonly used pharmaceuticals in surface water and wastewater, extensive attentions were paid recently to the fate and transport of these pharmaceuticals in the environment. Amitriptyline (AMI) is a tricyclic antidepressant widely applied to treat patients with anxiety and depression. In this study, the removal of AMI with palygorskite clay (PFl-1) was investigated under different physico-chemical conditions and supplemented by instrumental analyses. The uptake of AMI on PFl-1 was well fitted by the Langmuir isotherm with an adsorption capacity of 0.168 mmol g(-1) at pH 6-7. The AMI uptake was fast and reached equilibrium in 15 min. The X-ray diffraction patterns showed no shift of the (110) peak position of palygorskite after AMI uptake. However, the (001) peak position of the minor component smectite (about 10%) shifted to lower angle as the amounts of AMI input increased. These results suggested surface uptake of AMI on palygorskite and interlayer uptake of AMI in smectite. As smectite is a common component of palygorskite clays, its role in assessing the properties and performances of palygorskite clays for the uptake and removal of contaminants should not be neglected. Overall, the high affinity of AMI for PFl-1 and strong retention of AMI on PFl-1 suggested that it could be a good adsorbent to remove AMI from wastewater. Palygorskite clays can also be a sink for many cationic pharmaceuticals in the environmental of the arid regions.


Assuntos
Silicatos de Alumínio/química , Amitriptilina/química , Poluentes Químicos da Água/química , Adsorção , Amitriptilina/análise , Cátions , Argila , Concentração de Íons de Hidrogênio , Compostos de Magnésio/química , Silicatos/química , Compostos de Silício/química , Águas Residuárias , Água/química , Poluentes Químicos da Água/análise , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA