Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 243: 124828, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217052

RESUMO

2D Ti3C2Tx MXene is an ideal material for fabricating supercapacitor electrodes due to its excellent physical-chemical properties. However, the inherent self-stacking, narrow interlayer spacing, and low general mechanical strength limit its application in flexible supercapacitors. Herein, facile structural engineering strategies by drying (vacuum drying, freeze drying, and spin drying) were proposed to fabricate 3D high-performance Ti3C2Tx/sulfated cellulose nanofibril (SCNF) self-supporting film supercapacitor electrodes. Compared with other composite films, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a looser interlayer structure with more space which was conducive to charge storage and ion transport in the electrolyte. Therefore, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a higher specific capacitance (220 F/g) compared to the vacuum-dried Ti3C2Tx/SCNF composite film (191 F/g) and the spin-dried Ti3C2Tx/SCNF composite film (211 F/g). After 5000 cycles, the capacitance retention rate of the freeze-dried Ti3C2Tx/SCNF film electrode was close to 100 %, showing excellent cycle performance. Meanwhile, the tensile strength of freeze-dried Ti3C2Tx/SCNF composite film (13.7 MPa) was much greater than that of the pure film (7.4 MPa). This work demonstrated a facile strategy for control of Ti3C2Tx/SCNF composite film interlayer structure by drying for fabricating well-designed structured flexible and free-standing supercapacitor electrodes.


Assuntos
Sulfatos , Titânio , Celulose , Eletrodos
2.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745313

RESUMO

The rational regulation of catalysts with a well-controlled morphology and crystal structure has been demonstrated effective for optimizing the electrochemical performance. Herein, corrosion engineering was employed for the straightforward preparation of FeAl layered double hydroxide (LDH) nanosheets and Fe3O4 nanooctahedrons via the feasible modification of dealloying conditions. The FeAl-LDH nanosheets display an excellent catalytic performance for oxygen evolution reactions in 1 M KOH solution, such as low overpotentials (333 mV on glass carbon electrode and 284 mV on Ni foam at 10 mA cm-2), a small Tafel slope (36 mV dec-1), and excellent durability (24 h endurance without deactivation). The distinguished catalytic features of the FeAl-LDH nanosheets comes from the Al and Fe synergies, oxygen vacancies, and well-defined two-dimensional (2D) layered LDH structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA