Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372942

RESUMO

As the human population grows rapidly, food shortages will become an even greater problem; therefore, increasing crop yield has become a focus of rice breeding programs. The maize gene, ZmDUF1645, encoding a putative member of the DUF1645 protein family with an unknown function, was transformed into rice. Phenotypic analysis showed that enhanced ZmDUF1645 expression significantly altered various traits in transgenic rice plants, including increased grain length, width, weight, and number per panicle, resulting in a significant increase in yield, but a decrease in rice tolerance to drought stress. qRT-PCR results showed that the expression of the related genes regulating meristem activity, such as MPKA, CDKA, a novel crop grain filling gene (GIF1), and GS3, was significantly changed in the ZmDUF1645-overexpression lines. Subcellular colocalization showed that ZmDUF1645 was primarily localized on cell membrane systems. Based on these findings, we speculate that ZmDUF1645, like the OsSGL gene in the same protein family, may regulate grain size and affect yield through the cytokinin signaling pathway. This research provides further knowledge and understanding of the unknown functions of the DUF1645 protein family and may serve as a reference for biological breeding engineering to increase maize crop yield.


Assuntos
Secas , Oryza , Humanos , Oryza/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Expressão Ectópica do Gene , Melhoramento Vegetal , Grão Comestível/genética , Grão Comestível/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
PLoS One ; 11(12): e0168132, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977727

RESUMO

Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. The basis of cell invasion is not completely understood, but some key molecules of host cell invasion have been discovered. This paper investigated the characteristics of calcium-dependent protein kinase 4 (EtCDPK4), a critical molecule in E. tenella invasion of host cells. A full-length EtCDPK4 cDNA was identified from E. tenella using rapid amplification of cDNA ends. EtCDPK4 had an open reading frame of 1803 bp encoding a protein of 600 amino acids. Quantitative real-time PCR and western blotting were used to explore differences in EtCDPK4 transcription and translation in four developmental stages of E. tenella. EtCDPK4 was expressed at higher levels in sporozoites, but translation was higher in second-generation merozoites. In vitro invasion inhibition assays explored whether EtCDPK4 was involved in invasion of DF-1 cells by E. tenella sporozoites. Polyclonal antibodies against recombinant EtCDPK4 (rEtCDPK4) inhibited parasite invasion, decreasing it by approximately 52%. Indirect immunofluorescence assays explored EtCDPK4 distribution during parasite development after E. tenella sporozoite invasion of DF-1 cells in vitro. The results showed that EtCDPK4 might be important in sporozoite invasion and development. To analyze EtCDPK4 functional domains according to the structural characteristics of EtCDPK4 and study the kinase activity of rEtCDPK4, an in vitro phosphorylation system was established. We verified that rEtCDPK4 was a protein kinase that was completely dependent on Ca2+ for enzyme activity. Specific inhibitors of rEtCDPK4 activity were screened by kinase activity in vitro. Some specific inhibitors were applied to assays of DF-1 cell invasion by E. tenella sporozoites to confirm that the inhibitors functioned in vitro. W-7, H-7, H-89, and myristoylated peptide inhibited DF-1 invasion by E. tenella sporozoites. The experimental results showed that EtCDPK4 may be involved in E. tenella invasion of chicken cecal epithelial cells.


Assuntos
Eimeria tenella/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Anticorpos Antiprotozoários/imunologia , Clonagem Molecular , Eimeria tenella/genética , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA