Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421616

RESUMO

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.

2.
Plant J ; 118(2): 506-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169508

RESUMO

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Assuntos
Infertilidade , Oryza , Troca Genética , Mutação Puntual , Oryza/genética , Melhoramento Vegetal
3.
Mol Plant ; 16(8): 1321-1338, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501369

RESUMO

Because of its significance for plant male fertility and, hence, direct impact on crop yield, pollen exine development has inspired decades of scientific inquiry. However, the molecular mechanism underlying exine formation and thickness remains elusive. In this study, we identified that a previously unrecognized repressor, ZmMS1/ZmLBD30, controls proper pollen exine development in maize. Using an ms1 mutant with aberrantly thickened exine, we cloned a male-sterility gene, ZmMs1, which encodes a tapetum-specific lateral organ boundary domain transcription factor, ZmLBD30. We showed that ZmMs1/ZmLBD30 is initially turned on by a transcriptional activation cascade of ZmbHLH51-ZmMYB84-ZmMS7, and then it serves as a repressor to shut down this cascade via feedback repression to ensure timely tapetal degeneration and proper level of exine. This activation-feedback repression loop regulating male fertility is conserved in maize and sorghum, and similar regulatory mechanism may also exist in other flowering plants such as rice and Arabidopsis. Collectively, these findings reveal a novel regulatory mechanism of pollen exine development by which a long-sought master repressor of upstream activators prevents excessive exine formation.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mutação
4.
Plant Physiol ; 193(1): 627-642, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37233029

RESUMO

Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.


Assuntos
Arabidopsis , Flavonoides , Plantas , Pólen/genética , Arabidopsis/genética , Flavonóis , Esporos
5.
Plant Biotechnol J ; 21(8): 1659-1670, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37205779

RESUMO

In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Temperatura , Ligantes , Melhoramento Vegetal , Fertilidade , Oryza/genética , Infertilidade das Plantas/genética
6.
New Phytol ; 238(3): 1045-1058, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772858

RESUMO

Proper stamen filament elongation is essential for plant self-pollination and reproduction. Several phytohormones such as jasmonate and gibberellin play important roles in controlling filament elongation, but other endogenous signals involved in this developmental process remain unknown. We report here that three EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family peptides, EPFL4, EPFL5 and EPFL6, act redundantly to promote stamen filament elongation via enhancing filament cell proliferation in Arabidopsis thaliana. Knockout of EPFL4-6 genes led to shortened filaments due to defective filament cell proliferation, resulting in pollination failure and male sterility. Further genetic and biochemical analyses indicated that the ERECTA family and the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family RLKs form receptor complexes to perceive EPFL4-6 peptides and promote filament cell proliferation. Moreover, based on both loss- and gain-of-function genetic analyses, the mitogen-activated protein kinase cascade MKK4/MKK5-MPK6 was shown to function downstream of EPFL4-6 to positively regulate cell proliferation in stamen filaments. Together, this study reveals that an EPFL peptide signaling pathway composed of the EPFL4-6 peptide ligands, the ERECTA-SERK receptor complexes and the downstream MKK4/MKK5-MPK6 cascade promotes stamen filament elongation via enhancing filament cell proliferation to ensure successful self-pollination and normal fertility in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Polinização , Transdução de Sinais , Proliferação de Células , Peptídeos/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant Cell ; 35(5): 1474-1495, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36781400

RESUMO

The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Diferenciação Celular/genética , Homeostase , Regulação da Expressão Gênica de Plantas
8.
Cells ; 11(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36231139

RESUMO

Ethylene was previously reported to repress stamen development in both cucumber and Arabidopsis. Here, we performed a detailed analysis of the effect of ethylene on anther development. After ethylene treatment, stamens but not pistils display obvious developmental defects which lead to sterility. Both tapetum and microspores (or microsporocytes) degenerated after ethylene treatment. In ein2-1 and ein3-1 eil1-1 mutants, ethylene treatment did not affect their fertility, indicating the effects of ethylene on anther development are mediated by EIN2 and EIN3/EIL1 in vivo. The transcription of EIN2 and EIN3 are activated by ethylene in the tapetum layer. However, ectopic expression of EIN3 in tapetum did not induce significant anther defects, implying that the expression of EIN3 are regulated post transcriptional level. Consistently, ethylene treatment induced the accumulation of EIN3 in the tapetal cells. Thus, ethylene not only activates the transcription of EIN2 and EIN3, but also stabilizes of EIN3 in the tapetum to disturb its development. The expression of several ethylene related genes was significantly increased, and the expression of the five key transcription factors required for tapetum development was decreased after ethylene treatment. Our results thus point out that ethylene inhibits anther development through the EIN2-EIN3/EIL1 signaling pathway. The activation of this signaling pathway in anther wall, especially in the tapetum, induces the degeneration of the tapetum and leads to pollen abortion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
Plant Biotechnol J ; 20(10): 2023-2035, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781755

RESUMO

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.


Assuntos
Arabidopsis , Oryza , Oxirredutases , Infertilidade das Plantas , Pólen , Arabidopsis/genética , Arabidopsis/fisiologia , Colina/metabolismo , Glucose/metabolismo , Metanol/metabolismo , Mutação , Oryza/genética , Oryza/fisiologia , Oxirredutases/genética , Infertilidade das Plantas/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Temperatura , Fatores de Transcrição/genética
10.
Nucleic Acids Res ; 50(12): 6715-6734, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736138

RESUMO

In Escherichia coli, transcription-translation coupling is mediated by NusG. Although chloroplasts are descendants of endosymbiotic prokaryotes, the mechanism underlying this coupling in chloroplasts remains unclear. Here, we report transcription-translation coupling through AtNusG in chloroplasts. AtNusG is localized in chloroplast nucleoids and is closely associated with the chloroplast PEP complex by interacting with its essential component PAP9. It also comigrates with chloroplast ribosomes and interacts with their two components PRPS5 (uS5c) and PRPS10 (uS10c). These data suggest that the transcription and translation machineries are coupled in chloroplasts. In the atnusg mutant, the accumulation of chloroplast-encoded photosynthetic gene transcripts, such as psbA, psbB, psbC and psbD, was not obviously changed, but that of their proteins was clearly decreased. Chloroplast polysomic analysis indicated that the decrease in these proteins was due to the reduced efficiency of their translation in this mutant, leading to reduced photosynthetic efficiency and enhanced sensitivity to cold stress. These data indicate that AtNusG-mediated coupling between transcription and translation in chloroplasts ensures the rapid establishment of photosynthetic capacity for plant growth and the response to environmental changes. Therefore, our study reveals a conserved mechanism of transcription-translation coupling between chloroplasts and E. coli, which perhaps represents a regulatory mechanism of chloroplast gene expression. This study provides insights into the underlying mechanisms of chloroplast gene expression in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Cloroplastos , Cloroplastos , Arabidopsis/genética , Escherichia coli/genética , Fatores de Alongamento de Peptídeos , Fatores de Transcrição , Proteínas de Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transcrição Gênica , Biossíntese de Proteínas
11.
Front Plant Sci ; 13: 878693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574127

RESUMO

Reconstructing the development of sporangia in seed-free vascular plants provides crucial information about key processes enabling the production of spores that are important in the life cycle of these plants. By applying fluorescence imaging in intact tissues using dyes and confocal microscopy, this study aimed to reconstruct the key steps during the development of sporangia. Special emphasis was taken on the cell wall structures of tapetum and spore mother cells that have been challenged by microscopical documentation in the past. After staining the cell wall and cytoplasm using calcofluor white and basic fuchsin, the sporangium development of Pteris multifida was observed using confocal microscopy. The clear cell lineages from the sporangial initial cell to stalk, epidermis, inner tapetum, outer tapetum, and sporogenous cells were revealed by confocal imaging. The sporangium development improved in this work will be useful for a general understanding of fern spore formation.

12.
Front Plant Sci ; 13: 860945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548310

RESUMO

AtRsmD was recently demonstrated to be a chloroplast 16S rRNA methyltransferase (MTase) for the m2G915 modification in Arabidopsis. Here, its function of AtRsmD for chloroplast development and photosynthesis was further analyzed. The AtRsmD gene is highly expressed in green photosynthetic tissues. AtRsmD is associated with the thylakoid in chloroplasts. The atrsmd-2 mutant exhibited impaired photosynthetic efficiency in emerging leaves under normal growth conditions. A few thylakoid lamellas could be observed in the chloroplast from the atrsmd-2 mutant, and these thylakoids were loosely organized. Knockout of the AtRsmD gene had minor effects on chloroplast ribosome biogenesis and RNA loading on chloroplast ribosomes, but it reduced the amounts of chloroplast-encoded photosynthesis-related proteins in the emerging leaves, for example, D1, D2, CP43, and CP47, which reduced the accumulation of the photosynthetic complex. Nevertheless, knockout of the AtRsmD gene did not cause a general reduction in chloroplast-encoded proteins in Arabidopsis grown under normal growth conditions. Additionally, the atrsmd-2 mutant exhibited more sensitivity to lincomycin, which specifically inhibits the elongation of nascent polypeptide chains. Cold stress exacerbated the effect on chloroplast ribosome biogenesis in the atrsmd-2 mutant. All these data suggest that the AtRsmD protein plays distinct regulatory roles in chloroplast translation, which is required for chloroplast development and chloroplast function.

13.
Plant J ; 109(6): 1375-1385, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905264

RESUMO

Slow development has been shown to be a general mechanism to restore the fertility of thermo-sensitive and photoperiod-sensitive genic male sterile (TGMS and PGMS) lines in Arabidopsis. rpg1 is a TGMS line defective in primexine, which is essential for pollen wall pattern formation. Here, we showed that RPG1-GFP was highly expressed in microsporocytes, microspores, and pollen grains but not in the tapetum in the complemented transgenic line, suggesting that microsporocytes are the main sporophytic cells for primexine formation. Further cytological observations showed that primexine formation in rpg1 was partially restored under slow growth conditions, leading to its fertility restoration. RPG2 is the homolog of RPG1 in Arabidopsis. We revealed that the fertility recovery of rpg1 rpg2 was significantly reduced compared with that of rpg1 under low temperature. The RPG2-GFP protein was also expressed in microsporocytes in the RPG2-GFP (WT) transgenic line. These results suggest that RPG2 plays a redundant role in rpg1 fertility restoration. rpg1 plants were male sterile at the early growth stage, while their fertility was partially restored at the late developmental stage. The fertility of the rpg1 lateral branches was also partially restored. Further growth analysis showed that slow growth at the late reproductive stage or on the lateral branches led to fertility restoration. This work reveals the importance of gene redundancy in fertility restoration for TGMS lines and provides further insight into pollen wall pattern formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade/genética , Infertilidade das Plantas/genética , Pólen/metabolismo
14.
J Integr Plant Biol ; 64(3): 717-730, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34958169

RESUMO

Photoperiod/temperature-sensitive genic male sterility (P/TGMS) is widely applied for improving crop production. Previous investigations using the reversible male sterile (rvms) mutant showed that slow development is a general mechanism for restoring fertility to P/TGMS lines in Arabidopsis. In this work, we isolated a restorer of rvms-2 (res3), as the male sterility of rvms-2 was rescued by res3. Phenotype analysis and molecular cloning show that a point mutation in UPEX1 l in res3 leads to delayed secretion of callase A6 from the tapetum to the locule and tetrad callose wall degradation. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis demonstrated that the tapetal transcription factor ABORTED MICROSPORES directly regulates UPEX1 expression, revealing a pathway for tapetum secretory function. Early degradation of the callose wall in the transgenic line eliminated the fertility restoration effect of res3. The fertility of multiple known P/TGMS lines with pollen wall defects was also restored by res3. We propose that the remnant callose wall may broadly compensate for the pollen wall defects of P/TGMS lines by providing protection for pollen formation. A cellular mechanism is proposed to explain how slow development restores the fertility of P/TGMS lines in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infertilidade Masculina , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade/genética , Glucanos , Infertilidade Masculina/metabolismo , Fotoperíodo , Infertilidade das Plantas/genética , Pólen/metabolismo , Temperatura
15.
Front Plant Sci ; 12: 770311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887893

RESUMO

Pollen coat lipids form an outer barrier to protect pollen itself and play essential roles in pollen-stigma interaction. However, the precise molecular mechanisms underlying the production, deposition, regulation, and function of pollen coat lipids during anther development remain largely elusive. In lipid metabolism, 3-ketoacyl-coenzyme A synthases (KCS) are involved in fatty acid elongation or very-long-chain fatty acid (VLCFA) synthesis. In this study, we identified six members of the Arabidopsis KCS family expressed in anther. Among them, KCS7, KCS15, and KCS21 were expressed in tapetal cells at anther stages 8-10. Further analysis demonstrated that they act downstream of male sterility 1 (MS1), a regulator of late tapetum development. The kcs7/15/21 triple mutant is fertile. Both cellular observation and lipid staining showed pollen coat lipid was decreased in kcs7/15/21 triple mutant. After landing on stigma, the wild-type pollen grains were hydrated for about 5 min while the kcs7/15/21 triple mutant pollen took about 10 min to hydrate. Pollen tube growth of the triple mutant was also delayed. These results demonstrate that the tapetum-localized KCS proteins are involved in the accumulation of pollen coat lipid and reveal the roles of tapetal-derived pollen coat lipid for pollen-stigma interaction.

16.
J Integr Plant Biol ; 63(11): 1952-1966, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34427970

RESUMO

Chloroplast biogenesis requires the coordinated expression of chloroplast and nuclear genes. Here, we show that EMB1270, a plastid-localized pentatricopeptide repeat (PPR) protein, is required for chloroplast biogenesis in Arabidopsis thaliana. Knockout of EMB1270 led to embryo arrest, whereas a mild knockdown mutant of EMB1270 displayed a virescent phenotype. Almost no photosynthetic proteins accumulated in the albino emb1270 knockout mutant. By contrast, in the emb1270 knockdown mutant, the levels of ClpP1 and photosystem I (PSI) subunits were significantly reduced, whereas the levels of photosystem II (PSII) subunits were normal. Furthermore, the splicing efficiencies of the clpP1.2, ycf3.1, ndhA, and ndhB plastid introns were dramatically reduced in both emb1270 mutants. RNA immunoprecipitation revealed that EMB1270 associated with these introns in vivo. In an RNA electrophoretic mobility shift assay (REMSA), a truncated EMB1270 protein containing the 11 N-terminal PPR motifs bound to the predicted sequences of the clpP1.2, ycf3.1, and ndhA introns. In addition, EMB1270 specifically interacted with CRM Family Member 2 (CFM2). Given that CFM2 is known to be required for splicing the same plastid RNAs, our results suggest that EMB1270 associates with CFM2 to facilitate the splicing of specific group II introns in Arabidopsis.


Assuntos
Arabidopsis , DNA de Cloroplastos , Splicing de RNA , Arabidopsis/metabolismo , Cloroplastos/metabolismo , DNA de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons
17.
Mol Plant ; 14(12): 2104-2114, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34464765

RESUMO

During anther development, the transformation of the microspore into mature pollen occurs under the protection of first the tetrad wall and later the pollen wall. Mutations in genes involved in this wall transition often lead to microspore rupture and male sterility; some such mutants, such as the reversible male sterile (rvms) mutant, are thermo/photoperiod-sensitive genic male sterile (P/TGMS) lines. Previous studies have shown that slow development is a general mechanism of P/TGMS fertility restoration. In this study, we identified restorer of rvms-2 (res2), which is an allele of QUARTET 3 (QRT3) encoding a polygalacturonase that shows delayed degradation of the tetrad pectin wall. We found that MS188, a tapetum-specific transcription factor essential for pollen wall formation, can activate QRT3 expression for pectin wall degradation, indicating a non-cell-autonomous pathway involved in the regulation of the cell wall transition. Further assays showed that a delay in degradation of the tetrad pectin wall is responsible for the fertility restoration of rvms and other P/TGMS lines, whereas early expression of QRT3 eliminates low temperature restoration of rvms-2 fertility. Taken together, these results suggest a likely cellular mechanism of fertility restoration in P/TGMS lines, that is, slow development during the cell wall transition of P/TGMS microspores may reduce the requirement for their wall protection and thus support their development into functional pollens, leading to restored fertility.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fotoperíodo , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Parede Celular/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Pólen/genética , Pólen/fisiologia
18.
Plant Reprod ; 34(2): 91-101, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33903950

RESUMO

The pollen coat, which forms on the pollen surface, consists of a lipid-protein matrix. It protects pollen from desiccation and is involved in adhesion, pollen-stigma recognition, and pollen hydration during interactions with the stigma. The classical methods used for pollen coat observation are scanning and transmission electron microscopy. In this work, we screened a collection of fluorescence dyes and identified two fluorescent brighteners FB-52 and FB-184. When they were used together with the exine-specific dye, Basic fuchsin, the pollen coat and the exine structures could be clearly visualized in the pollen of Brassica napus. This co-staining method was applied successfully in staining pollen from Fraxinus chinensis, Calystegia hederacea, and Petunia hybrida. Using this method, small pollen coat-containing cavities were detected in the outer pollen wall layer of Oryza sativa and Zea mays. We further showed these dyes are compatible with fluorescent protein markers. In the Arabidopsis thaliana transgenic line of GFP-tagged pollen coat protein GRP19, GRP19-GFP was observed to form particles at the periphery of pollen coat. This simple staining method is expected to be widely used for the studies of the palynology as well as the pollen-stigma interaction.


Assuntos
Arabidopsis , Corantes , Lipídeos , Pólen , Coloração e Rotulagem
19.
Front Plant Sci ; 12: 634114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643363

RESUMO

The middle layer is an essential cell layer of the anther wall located between the endothecium and tapetum in Arabidopsis. Based on sectioning, the middle layer was found to be degraded at stage 7, which led to the separation of the tapetum from the anther wall. Here, we established techniques for live imaging of the anther. We created a marker line with fluorescent proteins expressed in all anther layers to study anther development. Several staining methods were used in the intact anthers to study anther cell morphology. We clarified the initiation, development, and degradation of the middle layer in Arabidopsis. This layer is initiated from both the inner and outer secondary parietal cells at stage 4, stopped cell division at stage 6, and finally degraded at stage 11. The neighboring cell layers, the epidermis, and endothecium continued cell division until stage 10, which led to a thin middle layer. The degradation of the tapetum cell wall at stage 7 lead to its isolation from the anther wall. This work presents fundamental information on the development of the middle layer, which facilitates the further investigation of anther development and plant fertility. These live imaging methods could be useful in future studies.

20.
Rice (N Y) ; 14(1): 4, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33409767

RESUMO

BACKGROUND: During anther development, the tapetum provides essential nutrients and materials for pollen development. In rice, multiple transcription factors and enzymes essential for tapetum development and pollen wall formation have been cloned from male-sterile lines. RESULTS: In this study, we obtained several lines in which the MYB transcription factor OsMS188 was knocked out through the CRISPR-Cas9 approach. The osms188 lines exhibited a male-sterile phenotype with aberrant development and degeneration of tapetal cells, absence of the sexine layer and defective anther cuticles. CYP703A3, CYP704B2, OsPKS1, OsPKS2, DPW and ABCG15 are sporopollenin synthesis and transport-related genes in rice. Plants with mutations in these genes are male sterile, with a defective sexine layer and anther cuticle. Further biochemical assays demonstrated that OsMS188 binds directly to the promoters of these genes to regulate their expression. UDT1, OsTDF1, TDR, bHLH142 and EAT1 are upstream regulators of rice tapetum development. Electrophoretic mobility shift assays (EMSAs) and activation assays revealed that TDR directly regulates OsMS188 expression. Additionally, protein interaction assays indicated that TDR interacts with OsMS188 to regulate downstream gene expression. CONCLUSION: Overall, OsMS188 is a key regulator of tapetum development and pollen wall formation. The gene regulatory network established in this work may facilitate future investigations of fertility regulation in rice and in other crop species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA