Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 168: 105566, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37339717

RESUMO

The 5-hydroxytryptamine 7 receptor (5-HT7R) is one of the most recently cloned serotonin receptors which have been implicated in many physiological and pathological processes including drug addiction. Behavioral sensitization is the progressive process during which re-exposure to drugs intensified the behavioral and neurochemical responses to drugs. Our previous study has demonstrated that the ventrolateral orbital cortex (VLO) is critical for morphine-induced reinforcing effect. The aim of the present study was to investigate the effect of 5-HT7Rs in the VLO on morphine-induced behavioral sensitization and their underlying molecular mechanisms. Our results showed that a single injection of morphine, followed by a low challenge dose could induce behavioral sensitization. Microinjection of the selective 5-HT7R agonist AS-19 into the VLO during the development phase significantly increased morphine-induced hyperactivity. Microinjection of the 5-HT7R antagonist SB-269970 suppressed acute morphine-induced hyperactivity and the induction of behavioral sensitization, but had no effect on the expression of behavioral sensitization. In addition, the phosphorylation of AKT (Ser 473) was increased during the expression phase of morphine-induced behavioral sensitization. Suppression of the induction phase could also block the increase of p-AKT (Ser 473). In conclusion, we demonstrated that 5-HT7Rs and p-AKT in the VLO at least partially contribute to morphine-induced behavioral sensitization.


Assuntos
Morfina , Serotonina , Ratos , Animais , Serotonina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Córtex Pré-Frontal/metabolismo
2.
Mol Neurobiol ; 60(9): 4872-4896, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37193866

RESUMO

Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI. In addition to cytokine induction, recent evidence has demonstrated the involvement of the stimulator of interferon genes (STING) pathway in ferroptosis. Therefore, we examined the possibility that treadmill exercise might inhibit TBI-induced ferroptosis via STING pathway. In this study, we first found that a series of ferroptosis-related characteristics, including abnormal iron homeostasis, decreased glutathione peroxidase 4 (Gpx4), and increased lipid peroxidation, were detected at 44 days post TBI, substantiating the involvement of ferroptosis at the chronic stage following TBI. Furthermore, treadmill exercise potently decreased the aforementioned ferroptosis-related changes, suggesting the anti-ferroptosis role of treadmill exercise following TBI. In addition to alleviating neurodegeneration, treadmill exercise effectively reduced anxiety, enhanced spatial memory recovery, and improved social novelty post TBI. Interestingly, STING knockdown also obtained the similar anti-ferroptosis effects after TBI. More importantly, overexpression of STING largely reversed the ferroptosis inactivation caused by treadmill exercise following TBI. To conclude, moderate-intensity treadmill exercise rescues TBI-induced ferroptosis and cognitive deficits at least in part via STING pathway, broadening our understanding of neuroprotective effects induced by treadmill exercise against TBI.


Assuntos
Lesões Encefálicas Traumáticas , Transtornos Cognitivos , Disfunção Cognitiva , Ferroptose , Humanos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/complicações , Transtornos Cognitivos/etiologia , Citocinas
3.
Chem Biodivers ; 18(11): e2100301, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561940

RESUMO

Isorhamnetin is a natural flavonoid which shows a variety of biological activities such as antioxidant, anti-inflammatory and antitumor. In order to identify the cellular binding protein of isorhamnetin as potential anti-cancer target, we first synthesized 3'-O-substituted quercetin as isorhamnetin homologues and evaluated the growth inhibitory activity of these derivatives on breast, colon and prostate cancer cell lines. The preliminary results showed that the 3'-O modification did not affect the cytotoxic activity of the scaffold. Analysis of the co-crystal structure and the docking pose of isorhamnetin with reported binding protein of isorhamnetin or quercetin indicated the 3'-O-substitution groups located outside of the binding pocket, which is in accordance with activity of 3'-O derivatives. Then a biotin conjugate of isorhamnetin with a tetraethylene glycol (PEG)4 linker at the 3' position was synthesized and the resulting probe retained the anti-proliferative activity on cancer cell lines, while the cellular fluorescence analysis showed the distribution of probe inside the cells which indicated the probe had limited cell permeability. Finally, pull down assay both in situ inside cells and in the cell lysates indicated the isorhamnetin biotin probe was capable of protein labeling in cell lysates. These findings provide the isorhamnetin 3'-O-biotin probe as a tool to reveal the target proteins of isorhamnetin.


Assuntos
Antineoplásicos/farmacologia , Quercetina/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Quercetina/síntese química , Quercetina/química , Quercetina/farmacologia , Células Tumorais Cultivadas
4.
Front Neurosci ; 14: 626348, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584180

RESUMO

Drug-induced memory engages complex and dynamic processes and is coordinated at multiple reward-related brain regions. The spatiotemporal molecular mechanisms underlying different addiction phases remain unknown. We investigated the role of ß-actin, as well as its potential modulatory protein activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) and extracellular signal-regulated kinase (ERK), in reward-related associative learning and memory using morphine-induced conditioned place preference (CPP) in mice. CPP was established by alternate morphine (10 mg/kg) injections and extinguished after a 10-day extinction training, while the withdrawal group failed to extinguish without training. In the nucleus accumbens (NAc), morphine enhanced the level of ß-actin and Arc only during extinction, while p-ERK1/2 was increased during both CPP acquisition and extinction phases. In the dorsal hippocampus, morphine induced an upregulation of p-ERK only during extinction, while p-ß-actin was elevated during both CPP establishment and extinction. In the dorsal hippocampus, Arc was elevated during CPP formation and suppressed during extinction. Compared with the NAc and dorsal hippocampus, dynamic changes in the medial prefrontal cortex (mPFC) and caudate putamen (CPu) were not very significant. These results suggested region-specific changes of p-ß-actin, Arc/Arg3.1, and p-ERK1/2 protein during establishment and extinction phases of morphine-induced CPP. These findings unveiled a spatiotemporal molecular regulation in opiate-induced plasticity.

5.
Chembiochem ; 20(23): 2916-2920, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31219673

RESUMO

Photocontrol of protein activity is an emerging field in biomedicine. For optical control of a mutant small GTPase K-Ras(G12C), we developed small-molecule inhibitors with photoswitchable efficacy, where one configuration binds the target protein and exert different pharmacological effects upon light irradiation. The compound design was based on the structure feature of a previously identified allosteric pocket of K-Ras(G12C) and the chemical structure of covalent inhibitors, and resulted in the synthesis and characterization of two representative azobenzene-containing compounds. Nucleotide exchange assays demonstrated the different efficacy to control the GTP affinity by photoswitching of one potent compound PS-C2, which would be a useful tool to probe the conformation of mutational K-Ras. Our study demonstrated the feasibility of designing photoswitchable modulators from allosteric covalent inhibitor of small GTPases.


Assuntos
Acetanilidas/química , Compostos Azo/química , Guanosina Trifosfato/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Acetanilidas/síntese química , Acetanilidas/efeitos da radiação , Sítio Alostérico/efeitos dos fármacos , Compostos Azo/síntese química , Compostos Azo/efeitos da radiação , Mutação , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Estereoisomerismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA