Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 26(5): 1043-1062, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37672206

RESUMO

The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.

2.
Neurobiol Dis ; 181: 106113, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37023829

RESUMO

BACKGROUND: Multiple sclerosis (MS), a chronic auto-immune, inflammatory, and degenerative disease of the central nervous system, affects both males and females; however, females suffer from a higher risk of developing MS (2-3:1 ratio relative to males). The precise sex-based factors influencing risk of MS are currently unknown. Here, we explore the role of sex in MS to identify molecular mechanisms underlying observed MS sex differences that may guide novel therapeutic approaches tailored for males or females. METHODS: We performed a rigorous and systematic review of genome-wide transcriptome studies of MS that included patient sex data in the Gene Expression Omnibus and ArrayExpress databases following PRISMA statement guidelines. For each selected study, we analyzed differential gene expression to explore the impact of the disease in females (IDF), in males (IDM) and our main goal: the sex differential impact of the disease (SDID). Then, for each scenario (IDF, IDM and SDID) we performed 2 meta-analyses in the main tissues involved in the disease (brain and blood). Finally, we performed a gene set analysis in brain tissue, in which a higher number of genes were dysregulated, to characterize sex differences in biological pathways. RESULTS: After screening 122 publications, the systematic review provided a selection of 9 studies (5 in blood and 4 in brain tissue) with a total of 474 samples (189 females with MS and 109 control females; 82 males with MS and 94 control males). Blood and brain tissue meta-analyses identified, respectively, 1 (KIR2DL3) and 13 (ARL17B, CECR7, CEP78, IFFO2, LOC401127, NUDT18, RNF10, SLC17A5, STMP1, TRAF3IP2-AS1, UBXN2B, ZNF117, ZNF488) MS-associated genes that differed between males and females (SDID comparison). Functional analyses in the brain revealed different altered immune patterns in females and males (IDF and IDM comparisons). The pro-inflammatory environment and innate immune responses related to myeloid lineage appear to be more affected in females, while adaptive responses associated with the lymphocyte lineage in males. Additionally, females with MS displayed alterations in mitochondrial respiratory chain complexes, purine, and glutamate metabolism, while MS males displayed alterations in stress response to metal ion, amine, and amino acid transport. CONCLUSION: We found transcriptomic and functional differences between MS males and MS females (especially in the immune system), which may support the development of new sex-based research of this disease. Our study highlights the importance of understanding the role of biological sex in MS to guide a more personalized medicine.


Assuntos
Esclerose Múltipla , Transcriptoma , Humanos , Masculino , Feminino , Esclerose Múltipla/genética , Caracteres Sexuais , Perfilação da Expressão Gênica , Sistema Nervoso Central , Proteínas de Transporte , Proteínas de Ciclo Celular
3.
Clin Cancer Res ; 29(1): 209-220, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36269794

RESUMO

PURPOSE: Follicular lymphoma (FL) is the most frequent indolent non-Hodgkin lymphoma. Around 20% of patients suffer early disease progression within 24 months (POD24) of diagnosis. This study examined the significance of circulating tumor DNA (ctDNA) in predicting response to therapy and POD24 in patients with FL. EXPERIMENTAL DESIGN: We collected 100 plasma samples, before and during the treatment, from 36 patients with FL prospectively enrolled in 8 Spanish hospitals. They were treated with a chemotherapy-rituximab regimen and followed up for a median of 3.43 years. We performed targeted deep sequencing in cell-free DNA (cfDNA) and tumor genomic DNA from 31 diagnostic biopsy samples. RESULTS: Of the alterations detected in the diagnostic tissue samples, 73% (300/411) were also identified in basal cfDNA. The mean numbers of alterations per basal cfDNA sample in patients who suffered progression of disease within 24 months (POD24-pos) or did not achieve complete response (non-CR) were significantly higher than in POD24-neg or CR patients (unpaired samples t test, P = 0.0001 and 0.001, respectively). Pretreatment ctDNA levels, as haploid genome equivalents per milliliter of plasma, were higher in patients without CR (P = 0.02) and in POD24-pos patients compared with POD24-neg patients (P < 0.001). Dynamic analysis showed that ctDNA levels decreased dramatically after treatment, although the reduction was more significant in patients with CR and POD24-neg patients. CONCLUSIONS: Basal ctDNA levels are associated with the risk of early progression and response to treatment in FL. cfDNA monitoring and genotyping during treatment and follow-up predict response to treatment and early progression.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Linfoma Folicular , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/genética , DNA Tumoral Circulante/genética , Projetos Piloto , Estudos Prospectivos , Progressão da Doença
4.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565286

RESUMO

Follicular lymphomas (FL) are neoplasms that resemble normal germinal center (GC) B-cells. Normal GC and neoplastic follicles contain non-neoplastic cells such as T-cells, follicular dendritic cells, cancer associated fibroblasts, and macrophages, which define the tumor microenvironment (TME), which itself is an essential factor in tumor cell survival. The main characteristics of the TME in FL are an increased number of follicular regulatory T-cells (Treg) and follicular helper T-cells (Tfh), M2-polarization of macrophages, and the development of a nodular network by stromal cells that creates a suitable niche for tumor growth. All of them play important roles in tumor angiogenesis, inhibition of apoptosis, and immune evasion, which are key factors in tumor progression and transformation risk. Based on these findings, novel therapies have been developed to target specific mutations present in the TME cells, restore immune suppression, and modulate TME.

5.
Neurobiol Dis ; 159: 105495, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478848

RESUMO

Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1ß, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12ß, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Comportamento Animal/fisiologia , Dieta Hiperlipídica , Disbiose/genética , Microbioma Gastrointestinal/fisiologia , Inflamação/genética , Estresse Psicológico/genética , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Disbiose/fisiopatologia , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Camundongos , Camundongos Transgênicos , Fagocitose/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Estresse Psicológico/fisiopatologia
6.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207773

RESUMO

Lymphoma research is a paradigm of the integration of basic and clinical research within the fields of diagnosis and therapy. Clinical, phenotypic, and genetic data are currently used to predict which patients could benefit from standard treatment. However, alternative therapies for patients at higher risk from refractoriness or relapse are usually empirically proposed, based on trial and error, without considering the genetic complexity of aggressive B-cell lymphomas. This is primarily due to the intricate mosaic of genetic and epigenetic alterations in lymphomas, which are an obstacle to the prediction of which drug will work for any given patient. Matching a patient's genes to drug sensitivity by directly testing live tissues comprises the "precision medicine" concept. However, in the case of lymphomas, this concept should be expanded beyond genomics, eventually providing better treatment options for patients in need of alternative therapeutic approaches. We provide an overview of the most recent findings in diffuse large B-cell lymphomas genomics, from the classic functional models used to study tumor biology and the response to experimental treatments using cell lines and mouse models, to the most recent approaches with spheroid/organoid models. We also discuss their potential relevance and applicability to daily clinical practice.

7.
Sci Rep ; 11(1): 1886, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479306

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease whose prognosis is associated with clinical features, cell-of-origin and genetic aberrations. Recent integrative, multi-omic analyses had led to identifying overlapping genetic DLBCL subtypes. We used targeted massive sequencing to analyze 84 diagnostic samples from a multicenter cohort of patients with DLBCL treated with rituximab-containing therapies and a median follow-up of 6 years. The most frequently mutated genes were IGLL5 (43%), KMT2D (33.3%), CREBBP (28.6%), PIM1 (26.2%), and CARD11 (22.6%). Mutations in CD79B were associated with a higher risk of relapse after treatment, whereas patients with mutations in CD79B, ETS1, and CD58 had a significantly shorter survival. Based on the new genetic DLBCL classifications, we tested and validated a simplified method to classify samples in five genetic subtypes analyzing the mutational status of 26 genes and BCL2 and BCL6 translocations. We propose a two-step genetic DLBCL classifier (2-S), integrating the most significant features from previous algorithms, to classify the samples as N12-S, EZB2-S, MCD2-S, BN22-S, and ST22-S groups. We determined its sensitivity and specificity, compared with the other established algorithms, and evaluated its clinical impact. The results showed that ST22-S is the group with the best clinical outcome and N12-S, the more aggressive one. EZB2-S identified a subgroup with a worse prognosis among GCB-DLBLC cases.


Assuntos
Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Mutação , Adulto , Idoso , Antígenos CD79/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Linfoma Difuso de Grandes Células B/classificação , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Prognóstico , Receptor Notch1/genética , Reprodutibilidade dos Testes , Rituximab/administração & dosagem
8.
Aging Cell ; 19(8): e13182, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32725944

RESUMO

Microglia dysfunction and activation are important hallmarks of the aging brain and are concomitant with age-related neurodegeneration and cognitive decline. Age-associated changes in microglia migration and phagocytic capacity result in maladaptive responses, chronic neuroinflammation, and worsened outcomes in neurodegenerative disorders. Given the sex bias in the incidence, prevalence, and therapy response of most neurological disorders, we have here examined whether the phagocytic activity of aged microglia is different in males and females. With this aim, the phagocytosis activity of male and female cells was compared in an in vitro aged microglia model and in microglia isolated from adult (5-month-old) or aged (18-month-old) mice. In both models, the phagocytosis of neural debris increased with aging in male and female cells and was higher in aged female microglia than in aged male cells. However, female aged microglia lost its ability to adapt its phagocytic activity to inflammatory conditions. These findings suggest that microglia phagocytosis of neural debris may represent a previously unexplored neuroprotective characteristic of aged microglia that may contribute to the generation of sex differences in the manifestation of neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Microglia/metabolismo , Fagocitose/fisiologia , Animais , Feminino , Masculino , Camundongos , Caracteres Sexuais
9.
J Neuroinflammation ; 17(1): 88, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192522

RESUMO

BACKGROUND: The participation of microglia in CNS development and homeostasis indicate that these cells are pivotal for the regeneration that occurs after demyelination. The clearance of myelin debris and the inflammatory-dependent activation of local oligodendrocyte progenitor cells in a demyelinated lesion is dependent on the activation of M2c microglia, which display both phagocytic and healing functions. Emerging interest has been raised about the role of Wnt/ß-catenin signaling in oligodendrogenesis and myelination. Besides, cytokines and growth factors released by microglia can control the survival, proliferation, migration, and differentiation of neural stem cells (NSCs), contributing to remyelination through the oligodendrocyte specification of this adult neurogenic niche. METHODS: TMEV-IDD model was used to study the contribution of dorsal SVZ stem cells to newly born oligodendrocytes in the corpus callosum following demyelination by (i) en-face dorsal SVZ preparations; (ii) immunohistochemistry; and (iii) cellular tracking. By RT-PCR, we analyzed the expression of Wnt proteins in demyelinated and remyelinating corpus callosum. Using in vitro approaches with microglia cultures and embryonic NSCs, we studied the role of purified myelin, Wnt proteins, and polarized microglia-conditioned medium to NSC proliferation and differentiation. One-way ANOVA followed by Bonferroni's post-hoc test, or a Student's t test were used to establish statistical significance. RESULTS: The demyelination caused by TMEV infection is paralleled by an increase in B1 cells and pinwheels in the dorsal SVZ, resulting in the mobilization of SVZ proliferative progenitors and their differentiation into mature oligodendrocytes. Demyelination decreased the gene expression of Wnt5a and Wnt7a, which was restored during remyelination. In vitro approaches show that Wnt3a enhances NSC proliferation, while Wnt7a and myelin debris promotes oligodendrogenesis from NSCs. As phagocytic M2c microglia secrete Wnt 7a, their conditioned media was found to induce Wnt/ß-Catenin signaling in NSCs promoting an oligodendroglial fate. CONCLUSIONS: We define here the contribution of microglia to Wnt production depending on their activation state, with M1 microglia secreting the Wnt5a protein and M2c microglia secreting Wnt7a. Collectively, our data reveal the role of reparative microglia in NSC oligodendrogenesis with the involvement of Wnt7a.


Assuntos
Diferenciação Celular/fisiologia , Microglia/metabolismo , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Proteínas Wnt/metabolismo , Animais , Feminino , Ventrículos Laterais/citologia , Camundongos , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Ratos
10.
Toxicol Appl Pharmacol ; 377: 114627, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202640

RESUMO

In many neuropathologies activated microglia and macrophages cause neurotoxicity and prolong the inflammatory response. We have previously characterized the glycosphingolipid Neurostatin (Nst), which potentially reduces these detrimental mechanisms. Nst, isolated from mammalian brain, is the GD1b ganglioside with O-acetylation of the outer sialic acid residue. Using the enzyme sialate-O-acetyltransferase (SOAT), we obtained several O-acetylated gangliosides and O-propionylated GD1b (PrGD1b). In the present study we investigated the anti-inflammatory effects of these compounds. Nst and other O-acetylated gangliosides reduced nitrite production in microglial cells which were activated with lipopolysaccharide (LPS), but did not affect nitrite production after their stimulation with interferon gamma (IFNγ). Structure-activity relationship analysis showed that Nst was the most active ganglioside as inhibitor of nitrite production. Its ceramide moiety is essential for this, and both, the O-acetylation and the monosaccharide chain are important for the anti-inflammatory activity of the gangliosides. We also found that Nst reduced iNOS, IL-6 and IL-12 transcription in LPS-induced microglia, likely by inhibiting nuclear localization of NFκB. In co-cultures, Nst reduced neuronal cell death caused by LPS-activated microglia. In vivo, Nst diminished microglia activation in a mouse model of acute neuroinflammation. We propose that Nst and other O-acetylated gangliosides are neuroprotective regulators of microglia activity under both physiological and pathological conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Encefalite/prevenção & controle , Gangliosídeos/farmacologia , Glicoesfingolipídeos/farmacologia , NF-kappa B/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Ratos , Ratos Wistar
11.
Mol Neurobiol ; 55(11): 8651-8667, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582398

RESUMO

Previous studies have shown that estradiol reduces reactive gliosis after a stab wound injury in the cerebral cortex. Since the therapeutic use of estradiol is limited by its peripheral hormonal effects, it is of interest to determine whether synthetic estrogenic compounds with tissue-specific actions regulate reactive gliosis. Tibolone is a synthetic steroid that is widely used for the treatment of climacteric symptoms and/or the prevention of osteoporosis. In this study, we have assessed the effect of tibolone on reactive gliosis in the cerebral cortex after a stab wound brain injury in ovariectomized adult female mice. By 7 days after brain injury, tibolone reduced the number of glial fibrillary acidic protein (GFAP) immunoreactive astrocytes, the number of ionized calcium binding adaptor molecule 1 (Iba1) immunoreactive microglia, and the number of microglial cells with a reactive phenotype in comparison to vehicle-injected animals. These effects on gliosis were associated with a reduction in neuronal loss in the proximity to the wound, suggesting that tibolone exerts beneficial homeostatic actions in the cerebral cortex after an acute brain injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Córtex Cerebral/patologia , Gliose/tratamento farmacológico , Neurônios/patologia , Norpregnenos/uso terapêutico , Ferimentos Perfurantes/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Morte Celular/efeitos dos fármacos , Proteínas de Ligação a DNA , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Gliose/patologia , Processamento de Imagem Assistida por Computador , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norpregnenos/farmacologia , Proteínas Nucleares/metabolismo , Fenótipo , Ferimentos Perfurantes/complicações , Ferimentos Perfurantes/patologia
12.
Glia ; 66(3): 522-537, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29139169

RESUMO

Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells.


Assuntos
Movimento Celular/fisiologia , Microglia/metabolismo , Ácido Palmítico/toxicidade , Fagocitose/fisiologia , Caracteres Sexuais , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/administração & dosagem , Interferon gama/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/patologia , Fagocitose/efeitos dos fármacos , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Prosencéfalo/patologia , RNA Mensageiro/metabolismo , Ratos Wistar
14.
J Cell Physiol ; 232(6): 1501-1510, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27753092

RESUMO

Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB. This process is beneficial for the resolution of the inflammation, neuronal survival, and the initiation of the healing process. Salubrinal is a small molecule with neuroprotective properties in different animal models of stroke and trauma to the CNS. Here, we show that salubrinal increased neuronal survival in the neighbourhood of a cerebral cortex stab injury. Moreover, salubrinal reduced cortical blood leakage into the parenchyma of injured animals compared with injured controls. Adjacent to the site of injury, salubrinal induced immunoreactivity for platelet-derived growth factor subunit B (PDGF-B), a specific mitogenic factor for mesenchymal cells. This effect might be responsible for the increased immunoreactivity for fibronectin and the decreased activation of microglia and macrophages in injured mice treated with salubrinal, compared with injured controls. The immunoreactivity for PDGF-B colocalized with neuronal nuclei (NeuN), suggesting that cortical neurons in the proximity of the injury were the main source of PDGF-B. Our results suggest that after an injury, neurons play an important role in both, the healing process and the restoration of the BBB integrity. J. Cell. Physiol. 232: 1501-1510, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas/tratamento farmacológico , Córtex Cerebral/lesões , Cinamatos/farmacologia , Neuroproteção/efeitos dos fármacos , Tioureia/análogos & derivados , Ferimentos Perfurantes/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Cinamatos/uso terapêutico , Modelos Animais de Doenças , Azul Evans/metabolismo , Fibronectinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tioureia/farmacologia , Tioureia/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Ferimentos Perfurantes/patologia
15.
J Cell Physiol ; 232(8): 2231-2245, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27987324

RESUMO

Bile acids are steroid acids found in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is neuroprotective in different animal models of stroke and neurological diseases. We have previously shown that TUDCA has anti-inflammatory effects on glial cell cultures and in a mouse model of acute neuroinflammation. We show now that microglial cells (central nervous system resident macrophages) express the G protein-coupled bile acid receptor 1/Takeda G protein-coupled receptor 5 (GPBAR1/TGR5) in vivo and in vitro. TUDCA binding to GPBAR1/TGR5 caused an increase in intracellular cAMP levels in microglia that induced anti-inflammatory markers, while reducing pro-inflammatory ones. This anti-inflammatory effect of TUDCA was inhibited by small interference RNA for GPBAR1/TGR5 receptor, as well as by treatment with a protein kinase A (PKA) inhibitor. In the mouse model of acute neuroinflammation, treating the animals with TUDCA was clearly anti-inflammatory. TUDCA biased the microglial phenotype in vivo and in vitro toward the anti-inflammatory. The bile acid receptor GPBAR1/TGR5 could be a new therapeutic target for pathologies coursing with neuroinflammation and microglia activation, such as traumatic brain injuries, stroke, or neurodegenerative diseases. TUDCA and other GPBAR1/TGR5 agonists need to be further investigated, to determine their potential in attenuating the neuropathologies associated with microglia activation. J. Cell. Physiol. 232: 2231-2245, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios/farmacologia , Encefalite/prevenção & controle , Hipocampo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Prosencéfalo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Encefalite/genética , Encefalite/metabolismo , Encefalite/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
16.
Mol Neurobiol ; 54(9): 6737-6749, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27744574

RESUMO

The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor ß (TGFß) pathway. The bacterial lipopolysaccharide (LPS) was injected intravenously (iv) on TGFß reporter mice (Smad-binding element (SBE)/Tk-Luc) to study in their brains the real-time activation profile of the TGFß pathway in a non-invasive way. The activation of the TGFß pathway in the brain of SBE/Tk-Luc mice increased 24 h after LPS injection, compared to control animals. This activation peak increased further in mice treated with both LPS and TUDCA than in mice treated with LPS only. The enhanced TGFß activation in mice treated with LPS and TUDCA correlated with both an increase in TGFß3 transcript in mouse brain and an increase in TGFß3 immunoreactivity in microglia/macrophages, endothelial cells, and neurons. Inhibition of the TGFß receptor with SB431542 drug reverted the effect of TUDCA on microglia/macrophages activation and on TGFß3 immunoreactivity. Under inflammatory conditions, treatment with TUDCA enhanced further the activation of TGFß pathway in mouse brain and increased the expression of TGFß3. Therefore, the induction of TGFß3 by TUDCA might act as a positive feedback, increasing the initial activation of the TGFß pathway by the inflammatory stimulus. Our findings provide proof-of-concept that TGFß contributes to the anti-inflammatory effect of TUDCA under neuroinflammatory conditions.


Assuntos
Anti-Inflamatórios/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácido Tauroquenodesoxicólico/administração & dosagem , Fator de Crescimento Transformador beta/biossíntese , Animais , Encéfalo/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Medições Luminescentes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
J Exp Med ; 213(11): 2281-2291, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27670591

RESUMO

IL-6 is known to contribute to the differentiation of CD4+ T cells into different subsets of effector T helper cells. Less is known about the potential of IL-6 in regulating CD8+ T cell effector function. Here, we identify IL-6 as a master regulator of IL-21 in effector CD8+ T cells. IL-6 promotes the differentiation of a subset of naive CD8+ T cells that express IL-6R into a unique population of effector CD8+ T cells characterized by the production of high levels of IL-21 and low levels of IFN-γ. Similar to CD4+ T follicular helper (Tfh) cells, IL-21-producing CD8+ T cells generated in the presence of IL-6 directly provide help to B cells to induce isotype switching. CD8+ T cell-derived IL-21 contributes to the production of protective virus-specific IgG antibodies during influenza virus infection. Thus, this study reveals the presence of a new mechanism by which IL-6 regulates antibody production during viral infection, and a novel function of effector CD8+ T cells in the protection against viruses.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Interleucina-6/metabolismo , Interleucinas/biossíntese , Animais , Switching de Imunoglobulina , Imunoglobulina G/metabolismo , Subpopulações de Linfócitos/metabolismo , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Fator de Transcrição STAT3/metabolismo
18.
Biochem Pharmacol ; 97(2): 158-72, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206186

RESUMO

We designed and synthesized two anomeric oleyl glucosaminides as anti-cancer agents where the presence of a trifluoroacetyl group close to the anomeric center makes them resistant to hydrolysis by hexosaminidases. The oleyl glycosides share key structural features with synthetic and natural oleyl derivatives that have been reported to exhibit anti-cancer properties. While both glycosides showed antiproliferative activity on cancer cell lines, only the α-anomer caused endoplasmic reticulum (ER) stress and cell death on C6 glioma cells. Analysis of sphingolipids and glycosphingolipds in cells treated with the glycosides showed that the α-anomer caused a drastic accumulation of ceramide and glucosylceramide and reduction of lactosylceramide and GM3 ganglioside at concentrations above a threshold of 20 µM. In order to understand how ceramide levels increase in response to α-glycoside treatment, further investigations were done using specific inhibitors of sphingolipid metabolic pathways. The pretreatment with 3-O-methylsphingomyelin (a neutral sphingomyelinase inhibitor) restored sphingomyelin levels together with the lactosylceramide and GM3 ganglioside levels and prevented the ER stress and cell death caused by the α-glycoside. The results indicated that the activation of neutral sphingomyelinase is the main cause of the alterations in sphingolipids that eventually lead to cell death. The new oleyl glycoside targets a key enzyme in sphingolipid metabolism with potential applications in cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Glicosídeos/administração & dosagem , Glicosídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Linhagem Celular Tumoral , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Glicosídeos/química , Ratos
19.
Exp Cell Res ; 335(1): 82-90, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25882497

RESUMO

After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFß, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFß treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth.


Assuntos
Córtex Cerebral/fisiologia , Cinamatos/farmacologia , Proteínas da Matriz Extracelular/biossíntese , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Proteoglicanas/antagonistas & inibidores , Tioureia/análogos & derivados , Animais , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/lesões , Técnicas de Cocultura , Fibroblastos/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/fisiologia , Neuroglia/metabolismo , Fosforilação , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteoglicanas/biossíntese , RNA Mensageiro/metabolismo , Tioureia/farmacologia , Fator de Crescimento Transformador beta/farmacologia
20.
J Neuroinflammation ; 11: 50, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24645669

RESUMO

BACKGROUND: Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. METHODS: The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. RESULTS: TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. CONCLUSIONS: We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases.


Assuntos
Colagogos e Coleréticos/farmacologia , Encefalite/patologia , Hipocampo/patologia , Neuroglia/efeitos dos fármacos , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Nitritos/metabolismo , Ratos Wistar , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA