RESUMO
Hematopoietic cell transplantation (HCT) uses cytotoxic chemotherapy and/or radiation followed by intravenous infusion of stem cells to cure malignancies, bone marrow failure and inborn errors of immunity, hemoglobin and metabolism. Lung injury is a known complication of the process, due in part to disruption in the pulmonary microenvironment by insults such as infection, alloreactive inflammation and cellular toxicity. How microorganisms, immunity and the respiratory epithelium interact to contribute to lung injury is uncertain, limiting the development of prevention and treatment strategies. Here we used 278 bronchoalveolar lavage (BAL) fluid samples to study the lung microenvironment in 229 pediatric patients who have undergone HCT treated at 32 children's hospitals between 2014 and 2022. By leveraging paired microbiome and human gene expression data, we identified high-risk BAL compositions associated with in-hospital mortality (P = 0.007). Disadvantageous profiles included bacterial overgrowth with neutrophilic inflammation, microbiome contraction with epithelial fibroproliferation and profound commensal depletion with viral and staphylococcal enrichment, lymphocytic activation and cellular injury, and were replicated in an independent cohort from the Netherlands (P = 0.022). In addition, a broad array of previously occult pathogens was identified, as well as a strong link between antibiotic exposure, commensal bacterial depletion and enrichment of viruses and fungi. Together these lung-immune system-microorganism interactions clarify the important drivers of fatal lung injury in pediatric patients who have undergone HCT. Further investigation is needed to determine how personalized interpretation of heterogeneous pulmonary microenvironments may be used to improve pediatric HCT outcomes.
Assuntos
Líquido da Lavagem Broncoalveolar , Disbiose , Transplante de Células-Tronco Hematopoéticas , Lesão Pulmonar , Humanos , Criança , Feminino , Lesão Pulmonar/patologia , Lesão Pulmonar/microbiologia , Masculino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Pré-Escolar , Adolescente , Líquido da Lavagem Broncoalveolar/microbiologia , Disbiose/microbiologia , Disbiose/imunologia , Microbiota , Lactente , Pulmão/patologia , Pulmão/microbiologia , Pulmão/imunologiaRESUMO
Lung injury is a major determinant of survival after pediatric hematopoietic cell transplantation (HCT). A deeper understanding of the relationship between pulmonary microbes, immunity, and the lung epithelium is needed to improve outcomes. In this multicenter study, we collected 278 bronchoalveolar lavage (BAL) samples from 229 patients treated at 32 children's hospitals between 2014-2022. Using paired metatranscriptomes and human gene expression data, we identified 4 patient clusters with varying BAL composition. Among those requiring respiratory support prior to sampling, in-hospital mortality varied from 22-60% depending on the cluster (p=0.007). The most common patient subtype, Cluster 1, showed a moderate quantity and high diversity of commensal microbes with robust metabolic activity, low rates of infection, gene expression indicating alveolar macrophage predominance, and low mortality. The second most common cluster showed a very high burden of airway microbes, gene expression enriched for neutrophil signaling, frequent bacterial infections, and moderate mortality. Cluster 3 showed significant depletion of commensal microbes, a loss of biodiversity, gene expression indicative of fibroproliferative pathways, increased viral and fungal pathogens, and high mortality. Finally, Cluster 4 showed profound microbiome depletion with enrichment of Staphylococci and viruses, gene expression driven by lymphocyte activation and cellular injury, and the highest mortality. BAL clusters were modeled with a random forest classifier and reproduced in a geographically distinct validation cohort of 57 patients from The Netherlands, recapitulating similar cluster-based mortality differences (p=0.022). Degree of antibiotic exposure was strongly associated with depletion of BAL microbes and enrichment of fungi. Potential pathogens were parsed from all detected microbes by analyzing each BAL microbe relative to the overall microbiome composition, which yielded increased sensitivity for numerous previously occult pathogens. These findings support personalized interpretation of the pulmonary microenvironment in pediatric HCT, which may facilitate biology-targeted interventions to improve outcomes.
RESUMO
Recognition of the earliest signs and symptoms of chronic graft-versus-host disease (GVHD) that lead to severe manifestations remains a challenge. The standardization provided by the National Institutes of Health (NIH) 2005 and 2014 consensus projects has helped improve diagnostic accuracy and severity scoring for clinical trials, but utilization of these tools in routine clinical practice is variable. Additionally, when patients meet the NIH diagnostic criteria, many already have significant morbidity and possibly irreversible organ damage. The goals of this early diagnosis project are 2-fold. First, we provide consensus recommendations regarding implementation of the current NIH diagnostic guidelines into routine transplant care, outside of clinical trials, aiming to enhance early clinical recognition of chronic GVHD. Second, we propose directions for future research efforts to enable discovery of new, early laboratory as well as clinical indicators of chronic GVHD, both globally and for highly morbid organ-specific manifestations. Identification of early features of chronic GVHD that have high positive predictive value for progression to more severe manifestations of the disease could potentially allow for future pre-emptive clinical trials.
Assuntos
Doença Enxerto-Hospedeiro , Doença Crônica , Consenso , Diagnóstico Precoce , Doença Enxerto-Hospedeiro/diagnóstico , Humanos , National Institutes of Health (U.S.) , Estados UnidosRESUMO
Several reports of second malignant neoplasm (SMN) in patients with relapsed neuroblastoma after treatment with (131)I-MIBG suggest the possibility of increased risk. Incidence of and risk factors for SMN after (131)I-MIBG have not been defined. This is a multi-institutional retrospective review of patients with neuroblastoma treated with (131)I-MIBG therapy. A competing risk approach was used to calculate the cumulative incidence of SMN from time of first exposure to (131)I-MIBG. A competing risk regression was used to identify potential risk factors for SMN. The analytical cohort included 644 patients treated with (131)I-MIBG. The cumulative incidence of SMN was 7.6% (95% confidence interval [CI], 4.4-13.0%) and 14.3% (95% CI, 8.3-23.9%) at 5 and 10 years from first (131)I-MIBG, respectively. No increase in SMN risk was found with increased number of (131)I-MIBG treatments or higher cumulative activity per kilogram of (131)I-MIBG received (p = 0.72 and p = 0.84, respectively). Thirteen of the 19 reported SMN were haematologic. In a multivariate analysis controlling for variables with p < 0.1 (stage, age at first (131)I-MIBG, bone disease, disease status at time of first (131)I-MIBG), patients with relapsed/progressive disease had significantly lower risk of SMN (subdistribution hazard ratio 0.3, 95% CI, 0.1-0.8, p = 0.023) compared to patients with persistent/refractory neuroblastoma. The cumulative risk of SMN after (131)I-MIBG therapy for patients with relapsed or refractory neuroblastoma is similar to the greatest published incidence for high-risk neuroblastoma after myeloablative therapy, with no dose-dependent increase. As the number of patients treated and length of follow-up time increase, it will be important to reassess this risk.
Assuntos
3-Iodobenzilguanidina/efeitos adversos , Antineoplásicos/efeitos adversos , Segunda Neoplasia Primária/induzido quimicamente , Neuroblastoma/tratamento farmacológico , Compostos Radiofarmacêuticos/efeitos adversos , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Terapia Combinada , Feminino , Neoplasias Hematológicas/induzido quimicamente , Humanos , Lactente , Masculino , Síndromes Mielodisplásicas/induzido quimicamente , Estudos Retrospectivos , Medição de Risco , Adulto JovemRESUMO
BACKGROUND: Positron-emission tomography (PET) imaging using [(18)F]fluorodeoxyglucose (FDG) is useful for detection, staging, and monitoring a variety of malignancies, including lymphoma, in adults, but its utility in sarcomas, especially soft tissue sarcomas (STS), in children and young adults is not clear. PROCEDURE: To evaluate the potential utility of FDG PET in the care of STS in children and young adults, we analyzed 46 PET scans in 25 patients acquired over 12 years. Scans were interpreted by two imaging physicians blinded to findings from other imaging studies and clinical information. Results were compared with computed tomography and magnetic resonance imaging, biopsy results, where available, and clinical follow-up of at least 12 months. RESULTS: For a total of 46 scans in 25 patients, there were 25 true-positive scans, 3 false-positive scans, 12 true-negative scans, and 6 false-negative scans. The sensitivity of the PET scan was 86%, specificity was 80%, positive predictive value was 89%, and negative predictive value was 67%. CONCLUSION: FDG PET may be a useful imaging modality in the management of children and young adults with STS, although prospective studies are needed to establish its true utility.