Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 39(6): 512-514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744626

RESUMO

Organic and conventional farms often coexist, yet their proximity does not ensure compatibility. Larsen et al. reveal that being surrounded by organic fields reduces pesticide usage in organic fields but increases it in conventional fields. We discuss these findings, emphasizing the need to cluster organic croplands for reduced pesticide use.


Assuntos
Agricultura Orgânica , Praguicidas , Produtos Agrícolas
2.
Front Plant Sci ; 15: 1253677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638353

RESUMO

The exogenous use of the redox compound (H2O2) plays a significant role in abiotic stress tolerance. The present study investigated various H2O2 application methods (seed priming, foliar spray, and surface irrigation) with varying concentration levels (0 mM, 5 mM, 10 mM, 15 mM, 40 mM, 80 mM, and 160 mM) to evaluate the efficiency of supplying exogenous H2O2 to quinoa under water-deficit conditions. Drought stress reduced quinoa growth and yield by perturbing morphological traits, leading to the overproduction of reactive oxygen species and increased electrolyte leakage. Although all studied modes of H2O2 application improved quinoa performance, surface irrigation was found to be sensitive, causing oxidative damage in the present study. Seed priming showed a prominent increase in plant height due to profound emergence indexes compared to other modes under drought conditions. Strikingly, seed priming followed by foliar spray improved drought tolerance in quinoa and showed higher grain yield compared to surface irrigations. This increase in the yield performance of quinoa was attributed to improvements in total chlorophyll (37%), leaf relative water content (RWC; 20%), superoxide dismutase (SOD; 35%), peroxidase (97%), polyphenol oxidase (60%), and phenylalanine ammonia-lyase (58%) activities, and the accumulation of glycine betaine (96%), total soluble protein (TSP; 17%), proline contents (35%), and the highest reduction in leaf malondialdehyde contents (MDA; 36%) under drought stress. PCA analysis indicated that physio-biochemical traits (proline, SOD, TSP, total chlorophyll, MSI, and RWC) were strongly positively correlated with grain yield, and their contribution was much higher in redox priming than other application methods. In conclusion, exogenous H2O2 application, preferably redox priming, could be chosen to decrease drought-induced performance and yield losses in quinoa.

3.
Physiol Plant ; 175(6): e14057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148196

RESUMO

Climate change-induced concurrent drought and salinity stresses significantly threaten global crop yields, yet the physio-biochemical responses to combined stress in quinoa remain elusive. This study evaluated quinoa responses under four growth conditions: well-watered, drought stress, salt stress, and drought + salt stress with (15 mM) or without (0 mM) exogenous hydrogen peroxide (H2 O2 ) application. All examined stresses (alone or in combination) reduce quinoa growth and net photosynthesis, although salt stress was found to be less destructive than drought and combined stress. Strikingly, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), stomatal conductance (gs ), photosynthetic rate (PN ), K+ uptake, shoot height, shoot fresh, and dry weight were increased by 46.1%, 22.2%, 101.6%, 12.9%, 12.1%, 22.4%, 7.1%, 14%, and 16.4%, respectively, under combined stress compared to drought alone. In addition, exogenous H2 O2 effectively improved gaseous exchange, osmolytes' accumulation, and antioxidant activity, resulting in reduced lipid peroxidation, which eventually led to higher plant growth under all coercive conditions. The principle component analysis (PCA) indicated a strong positive correlation between antioxidant enzymes and inorganic ions, which contributed efficiently to osmotic adjustment, particularly under conditions of salinity followed by combined stress. In short, in combination, salt stress has the potential to mitigate drought-induced injuries by promoting the absorption of inorganic solutes for osmoregulation in quinoa plants. Furthermore, exogenous application of H2 O2 could be opted to enhance quinoa performance to increase its tolerance mechanism against drought and salinity, even under combined stress.


Assuntos
Antioxidantes , Chenopodium quinoa , Antioxidantes/metabolismo , Osmorregulação , Salinidade , Secas , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA