Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Stem Cell Reports ; 18(4): 817-828, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37001516

RESUMO

Genomic imprinting underlies the mammalian requirement for sexual reproduction. Nonetheless, the relative contribution of the two parental genomes during human development is not fully understood. Specifically, a fascinating question is whether the formation of the gonad, which holds the ability to reproduce, depends on equal contribution from both parental genomes. Here, we differentiated androgenetic and parthenogenetic human pluripotent stem cells (hPSCs) into ovarian granulosa-like cells (GLCs). We show that in contrast to biparental and androgenetic cells, parthenogenetic hPSCs present a reduced capacity to differentiate into GLCs. We further identify the paternally expressed gene IGF2 as the most upregulated imprinted gene upon differentiation. Remarkably, while IGF2 knockout androgenetic cells fail to differentiate into GLCs, the differentiation of parthenogenetic cells supplemented with IGF2 is partly rescued. Thus, our findings unravel a surprising essentiality of genes that are only expressed from the paternal genome to the development of the female reproductive system.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Animais , Humanos , Feminino , Impressão Genômica , Diferenciação Celular/genética , Partenogênese/genética , Células da Granulosa , Mamíferos
2.
Stem Cell Reports ; 17(5): 1048-1058, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427485

RESUMO

Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. The epigenetic factors responsible for FMR1 inactivation are largely unknown. Here, we initially demonstrated the feasibility of FMR1 reactivation by targeting a single epigenetic factor, DNMT1. Next, we established a model system for FMR1 silencing using a construct containing the FXS-related mutation upstream to a reporter gene. This construct was methylated in vitro and introduced into a genome-wide loss-of-function (LOF) library established in haploid human pluripotent stem cells (PSCs), allowing the identification of genes whose functional loss reversed the methylation-induced silencing of the FMR1 reporter. Selected candidate genes were further analyzed in haploid- and FXS-patient-derived PSCs, highlighting the epigenetic and metabolic pathways involved in FMR1 regulation. Our work sheds light on the mechanisms responsible for CGG-expansion-mediated FMR1 inactivation and offers novel targets for therapeutic FMR1 reactivation.


Assuntos
Síndrome do Cromossomo X Frágil , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Humanos
3.
Nat Commun ; 12(1): 6718, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795250

RESUMO

In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity.


Assuntos
Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Impressão Genômica , Haploidia , Células-Tronco Embrionárias Humanas/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação/métodos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Células-Tronco Embrionárias Humanas/citologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Partenogênese/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Espermatogênese/genética
4.
Cell Stem Cell ; 25(3): 419-432.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491396

RESUMO

Genomic imprinting is an epigenetic mechanism that results in parent-of-origin monoallelic expression of specific genes, which precludes uniparental development and underlies various diseases. Here, we explored molecular and developmental aspects of imprinting in humans by generating exclusively paternal human androgenetic embryonic stem cells (aESCs) and comparing them with exclusively maternal parthenogenetic ESCs (pESCs) and bi-parental ESCs, establishing a pluripotent cell system of distinct parental backgrounds. Analyzing the transcriptomes and methylomes of human aESCs, pESCs, and bi-parental ESCs enabled the characterization of regulatory relations at known imprinted regions and uncovered imprinted gene candidates within and outside known imprinted regions. Investigating the consequences of uniparental differentiation, we showed the known paternal-genome preference for placental contribution, revealed a similar bias toward liver differentiation, and implicated the involvement of the imprinted gene IGF2 in this process. Our results demonstrate the utility of parent-specific human ESCs for dissecting the role of imprinting in human development and disease.


Assuntos
Células-Tronco Embrionárias/fisiologia , Partenogênese/fisiologia , Células-Tronco Pluripotentes/fisiologia , Caracteres Sexuais , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Humanos , Fator de Crescimento Insulin-Like II/genética , Masculino , Pais , Transcriptoma
5.
iScience ; 11: 398-408, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30660107

RESUMO

Human pluripotent stem cells (hPSCs) acquire genetic changes during their propagation in culture that can affect their use in research and future therapies. To identify the key genes involved in selective advantage during culture adaptation and tumorigenicity of hPSCs, we generated a genome-wide screening system for genes and pathways that provide a growth advantage either in vitro or in vivo. We found that hyperactivation of the RAS pathway confers resistance to selection with the hPSC-specific drug PluriSIn-1. We also identified that inactivation of the RHO-ROCK pathway gives growth advantage during culture adaptation. Last, we demonstrated the importance of the PI3K-AKT and HIPPO pathways for the teratoma formation process. Our screen revealed key genes and pathways relevant to the tumorigenicity and survival of hPSCs and should thus assist in understanding and confronting their tumorigenic potential.

6.
Int J Dev Biol ; 61(3-4-5): 285-292, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28621425

RESUMO

Fragile X syndrome is the most frequent cause of inherited intellectual disability. The primary molecular defect in this disease is the expansion of a CGG repeat in the 5' region of the fragile X mental retardation1 (FMR1) gene, leading to de novo methylation of the promoter and inactivation of this otherwise normal gene, but little is known about how these epigenetic changes occur during development. In order to gain insight into the nature of this process, we have used cell fusion technology to recapitulate the events that occur during early embryogenesis. These experiments suggest that the naturally occurring Fragile XFMR1 5' region undergoes inactivation post implantation in a Dicer/Ago-dependent targeted process which involves local SUV39H-mediated tri-methylation of histone H3K9. It thus appears that Fragile X syndrome may come about through inadvertent siRNA-mediated heterochromatinization.


Assuntos
Metilação de DNA , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica no Desenvolvimento , Regiões 5' não Traduzidas , Animais , Diferenciação Celular , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Heterocromatina/química , Histonas/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Regiões Promotoras Genéticas , RNA/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
7.
Stem Cell Reports ; 7(4): 777-786, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27618722

RESUMO

Down syndrome (DS) is the leading genetic cause of mental retardation and is caused by a third copy of human chromosome 21. The different pathologies of DS involve many tissues with a distinct array of neural phenotypes. Here we characterize embryonic stem cell lines with DS (DS-ESCs), and focus on the neural aspects of the disease. Our results show that neural progenitor cells (NPCs) differentiated from five independent DS-ESC lines display increased apoptosis and downregulation of forehead developmental genes. Analysis of differentially expressed genes suggested RUNX1 as a key transcription regulator in DS-NPCs. Using genome editing we were able to disrupt all three copies of RUNX1 in DS-ESCs, leading to downregulation of several RUNX1 target developmental genes accompanied by reduced apoptosis and neuron migration. Our work sheds light on the role of RUNX1 and the importance of dosage balance in the development of neural phenotypes in DS.


Assuntos
Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Dosagem de Genes , Edição de Genes , Humanos , Cariótipo , Neurogênese/genética , Fenótipo
8.
Nature ; 532(7597): 107-11, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26982723

RESUMO

Diploidy is a fundamental genetic feature in mammals, in which haploid cells normally arise only as post-meiotic germ cells that serve to ensure a diploid genome upon fertilization. Gamete manipulation has yielded haploid embryonic stem (ES) cells from several mammalian species, but haploid human ES cells have yet to be reported. Here we generated and analysed a collection of human parthenogenetic ES cell lines originating from haploid oocytes, leading to the successful isolation and maintenance of human ES cell lines with a normal haploid karyotype. Haploid human ES cells exhibited typical pluripotent stem cell characteristics, such as self-renewal capacity and a pluripotency-specific molecular signature. Moreover, we demonstrated the utility of these cells as a platform for loss-of-function genetic screening. Although haploid human ES cells resembled their diploid counterparts, they also displayed distinct properties including differential regulation of X chromosome inactivation and of genes involved in oxidative phosphorylation, alongside reduction in absolute gene expression levels and cell size. Surprisingly, we found that a haploid human genome is compatible not only with the undifferentiated pluripotent state, but also with differentiated somatic fates representing all three embryonic germ layers both in vitro and in vivo, despite a persistent dosage imbalance between the autosomes and X chromosome. We expect that haploid human ES cells will provide novel means for studying human functional genomics and development.


Assuntos
Diferenciação Celular , Estudos de Associação Genética/métodos , Haploidia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Autorrenovação Celular , Separação Celular , Tamanho Celular , Cromossomos Humanos X/genética , Diploide , Regulação para Baixo/genética , Deleção de Genes , Camadas Germinativas/citologia , Humanos , Cariotipagem , Oócitos/metabolismo , Fosforilação Oxidativa , Partenogênese , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Inativação do Cromossomo X/genética
9.
Cell Rep ; 13(2): 234-41, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26440889

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from a CGG repeat expansion in the fragile X mental retardation 1 (FMR1) gene. Here, we report a strategy for CGG repeat correction using CRISPR/Cas9 for targeted deletion in both embryonic stem cells and induced pluripotent stem cells derived from FXS patients. Following gene correction in FXS induced pluripotent stem cells, FMR1 expression was restored and sustained in neural precursor cells and mature neurons. Strikingly, after removal of the CGG repeats, the upstream CpG island of the FMR1 promoter showed extensive demethylation, an open chromatin state, and transcription initiation. These results suggest a silencing maintenance mechanism for the FMR1 promoter that is dependent on the existence of the CGG repeat expansion. Our strategy for deletion of trinucleotide repeats provides further insights into the molecular mechanisms of FXS and future therapies of trinucleotide repeat disorders.


Assuntos
Metilação de DNA , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Repetições de Trinucleotídeos , Sistemas CRISPR-Cas , Células Cultivadas , Ilhas de CpG , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Regiões Promotoras Genéticas
10.
PLoS One ; 9(5): e96090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24852222

RESUMO

Both mouse and human embryonic stem cells can be differentiated in vitro to produce a variety of somatic cell types. Using a new developmental tracing approach, we show that these cells are subject to massive aberrant CpG island de novo methylation that is exacerbated by differentiation in vitro. Bioinformatics analysis indicates that there are two distinct forms of abnormal de novo methylation, global as opposed to targeted, and in each case the resulting pattern is determined by molecular rules correlated with local pre-existing histone modification profiles. Since much of the abnormal methylation generated in vitro appears to be stably maintained, this modification may inhibit normal differentiation and could predispose to cancer if cells are used for replacement therapy. Excess CpG island methylation is also observed in normal placenta, suggesting that this process may be governed by an inherent program.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Ilhas de CpG , Células-Tronco Embrionárias/citologia , Epigênese Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
11.
Nat Genet ; 46(6): 551-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24816254

RESUMO

Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated case-derived induced pluripotent stem cells (iPSCs) harboring distinct aberrations in the affected region on chromosome 15. In studying PWS-iPSCs and human parthenogenetic iPSCs, we unexpectedly found substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we determined that IPW, a long noncoding RNA in the critical region of the PWS locus, is a regulator of the DLK1-DIO3 region, as its overexpression in PWS and parthenogenetic iPSCs resulted in downregulation of MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , Síndrome de Prader-Willi/genética , RNA não Traduzido/genética , Adolescente , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Cromatina/metabolismo , Aberrações Cromossômicas , Metilação de DNA , Regulação para Baixo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Impressão Genômica , Humanos , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Transcrição Gênica , Transcriptoma
12.
Cell Rep ; 4(2): 262-70, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23871667

RESUMO

Female human pluripotent stem cells show vast heterogeneity regarding the status of X chromosome inactivation. By comparing the gene expression profile of cells with two active X chromosomes (XaXa cells) to that of cells with only one active X chromosome (XaXi cells), a set of autosomal genes was shown to be overexpressed in the XaXa cells. Among these genes, we found significant enrichment for genes regulated by the X-linked transcription factor ELK-1. Comparison of the phenotype of XaXa and XaXi cells demonstrated differences in programmed cell death and differentiation, implying some growth disadvantage of the XaXa cells. Interestingly, ELK-1-overexpressing cells mimicked the phenotype of XaXa cells, whereas knockdown of ELK-1 with small hairpin RNA mimicked the phenotype of XaXi cells. When cultured at low oxygen levels, these cellular differences were considerably weakened. Our analysis implies a role of ELK-1 in the differences between pluripotent stem cells with distinct X chromosome inactivation statuses.


Assuntos
Células-Tronco Pluripotentes/fisiologia , Inativação do Cromossomo X/genética , Proteínas Elk-1 do Domínio ets/genética , Animais , Apoptose/genética , Diferenciação Celular , Regulação para Baixo , Feminino , Genômica , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos NOD , Camundongos SCID , Análise em Microsséries , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Polimorfismo de Nucleotídeo Único , Transcriptoma , Transfecção , Proteínas Elk-1 do Domínio ets/metabolismo
13.
Cell Stem Cell ; 12(2): 167-79, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23318055

RESUMO

The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns), nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound, PluriSIn #1, induces ER stress, protein synthesis attenuation, and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in oleic acid biosynthesis, revealing a unique role for lipid metabolism in hPSCs. PluriSIn #1 was also cytotoxic to mouse blastocysts, indicating that the dependence on oleate is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácido Oleico/síntese química , Células-Tronco Pluripotentes/efeitos dos fármacos , Estearoil-CoA Dessaturase/antagonistas & inibidores , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Células Cultivadas , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
14.
Stem Cells ; 30(12): 2700-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22987393

RESUMO

The immunogenicity of human pluripotent stem cells plays a major role in their potential use in the clinic. We show that, during their reprogramming, human-induced pluripotent stem (iPS) cells downregulate expression of human leukocyte antigen (HLA)-A/B/C and ß2 microglobulin (ß2M), the two components of major histocompatibility complex-I (MHC-I). MHC-I expression in iPS cells can be restored by differentiation or treatment with interferon-gamma (IFNγ). To analyze the molecular mechanisms that regulate the expression of the MHC-I molecules in human iPS cells, we searched for correlation between the expression of HLA-A/B/C and ß2M and the expression of transcription factors that bind to the promoter of these genes. Our results show a significant positive correlation between MHC-I expression and expression of the nuclear factors, nuclear factor kappa B 1 (NFκB1) and RelA, at the levels of RNA, protein and was confirmed by chromatin binding. Concordantly, we detected robust levels of NFκB1 and RelA proteins in the nucleus of somatic cells but not in the iPS cell derived from them. Overexpression of NFκB1 and RelA in undifferentiated pluripotent stem cells led to induction in expression of MHC-I, whereas silencing NFκB1 and RelA by small hairpin RNA decreased the expression of ß2M after IFNγ treatment. Our data point to the critical role of NFκB proteins in regulating the MHC-I expression in human pluripotent stem cells.


Assuntos
Reprogramação Celular/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/fisiologia , NF-kappa B/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Regulação para Baixo , Fibroblastos/citologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Interferon gama/imunologia , Interferon gama/farmacologia , Análise em Microsséries , NF-kappa B/biossíntese , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/imunologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fator de Transcrição RelA/biossíntese , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Fator de Transcrição RelA/metabolismo , Microglobulina beta-2/biossíntese , Microglobulina beta-2/imunologia
15.
Nat Struct Mol Biol ; 18(6): 735-41, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21572443

RESUMO

To study the role of parental imprinting in human embryogenesis, we generated parthenogenetic human induced pluripotent stem cells (iPSCs) with a homozygote diploid karyotype. Global gene expression and DNA methylation analyses of the parthenogenetic cells enabled the identification of the entire repertoire of paternally expressed genes. We thus demonstrated that the gene U5D, encoding a variant of the U5 small RNA component of the spliceosome, is an imprinted gene. Introduction of the U5D gene into parthenogenetic cells partially corrected their molecular phenotype. Our analysis also uncovered multiple miRNAs existing as imprinted clustered transcripts, whose putative targets we then studied further. Examination of the consequences of parthenogenesis on human development identified marked effects on the differentiation of extraembryonic trophectoderm and embryonic liver and muscle tissues. This analysis suggests that distinct regulatory imprinted small RNAs and their targets have substantial roles in human development.


Assuntos
Impressão Genômica , Células-Tronco Pluripotentes Induzidas/fisiologia , Metilação de DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Partenogênese , RNA não Traduzido/metabolismo
16.
J Cell Mol Med ; 15(6): 1393-401, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20561110

RESUMO

Teratogens are substances that may cause defects in normal embryonic development while not necessarily being toxic in adults. Identification of possible teratogenic compounds has been historically beset by the species-specific nature of the teratogen response. To examine teratogenic effects on early human development we performed non-biased expression profiling of differentiating human embryonic and induced pluripotent stem cells treated with several drugs--ethanol, lithium, retinoic acid (RA), caffeine and thalidomide, which is known to be highly species specific. Our results point to the potency of specific teratogens and their affected tissues and pathways. Specifically, we could show that ethanol caused dramatic increase in endodermal differentiation, RA caused misregulation of neural development and thalidomide affected both these processes. We thus propose this method as a valuable addition to currently available animal screening approaches.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Teratogênicos/farmacologia , Linhagem Celular , Corpos Embrioides/patologia , Células-Tronco Embrionárias/patologia , Endoderma/patologia , Etanol/efeitos adversos , Perfilação da Expressão Gênica/métodos , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neurogênese/efeitos dos fármacos , Talidomida/efeitos adversos , Tretinoína/efeitos adversos
17.
Stem Cells ; 28(9): 1530-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20641042

RESUMO

Syndromes caused by chromosomal aneuploidies are widely recognized genetic disorders in humans and often lead to spontaneous miscarriage. Preimplantation genetic screening is used to detect chromosomal aneuploidies in early embryos. Our aim was to derive aneuploid human embryonic stem cell (hESC) lines that may serve as models for human syndromes caused by aneuploidies. We have established 25 hESC lines from blastocysts diagnosed as aneuploid on day 3 of their in vitro development. The hESC lines exhibited morphology and expressed markers typical of hESCs. They demonstrated long-term proliferation capacity and pluripotent differentiation. Karyotype analysis revealed that two-third of the cell lines carry a normal euploid karyotype, while one-third remained aneuploid throughout the derivation, resulting in eight hESC lines carrying either trisomy 13 (Patau syndrome), 16, 17, 21 (Down syndrome), X (Triple X syndrome), or monosomy X (Turner syndrome). On the basis of the level of single nucleotide polymorphism heterozygosity in the aneuploid chromosomes, we determined whether the aneuploidy originated from meiotic or mitotic chromosomal nondisjunction. Gene expression profiles of the trisomic cell lines suggested that all three chromosomes are actively transcribed. Our analysis allowed us to determine which tissues are most affected by the presence of a third copy of either chromosome 13, 16, 17 or 21 and highlighted the effects of trisomies on embryonic development. The results presented here suggest that aneuploid embryos can serve as an alternative source for either normal euploid or aneuploid hESC lines, which represent an invaluable tool to study developmental aspects of chromosomal abnormalities in humans.


Assuntos
Aneuploidia , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Cromossomos Humanos , Células-Tronco Embrionárias/patologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/patologia , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 21 , Análise por Conglomerados , Perfilação da Expressão Gênica , Testes Genéticos , Humanos , Cariotipagem , Diagnóstico Pré-Implantação/métodos , Síndrome
18.
Stem Cells ; 25(2): 465-72, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17038673

RESUMO

Human ESCs (HESCs) are self-renewing pluripotent cell lines that are derived from the inner cell mass of blastocyst-stage embryos. These cells can produce terminally differentiated cells representing the three embryonic germ layers. We thus hypothesized that during the course of in vitro differentiation of HESCs, progenitor-like cells are transiently formed. We demonstrated that LEFTY proteins, which are known to play a major role during mouse gastrulation, are transiently expressed during HESC differentiation. Moreover, LEFTY proteins seemed to be exclusively expressed by a certain population of cells in the early human embryoid bodies that does not overlap with the population expressing the ESC marker OCT4. We also showed that LEFTY expression is regulated at the cellular transcription level by molecular labeling of LEFTY-positive cells. A DNA microarray analysis of LEFTY-overexpressing cells revealed a signature of cell surface markers such as CADHERIN 2 and 11. Expression of LEFTY controlled by NODAL appears to have a substantial role in mesodermal origin cell population establishment, since inhibition of NODAL activity downregulated expression not only of LEFTY A and LEFTY B but also of BRACHYURY, an early mesodermal marker. In addition, other mesodermal lineage-related genes were downregulated, and this was accompanied by an upregulation in ectoderm-related genes. We propose that during the initial step of HESC differentiation, mesoderm progenitor-like cells appear via activation of the NODAL pathway. Our analysis suggests that in vitro differentiation of HESCs can model early events in human development.


Assuntos
Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Células Cultivadas , Dioxóis/farmacologia , Embrião de Mamíferos/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Proteínas Fetais/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fatores de Determinação Direita-Esquerda , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Camundongos , Proteína Nodal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Domínio T/genética , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores
19.
Cell Stem Cell ; 1(5): 568-77, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18371394

RESUMO

We report on the establishment of a human embryonic stem cell (HESC) line from a preimplantation fragile X-affected embryo and demonstrate its value as an appropriate model to study developmentally regulated events that are involved in the pathogenesis of this disorder. Fragile X syndrome results from FMR1 gene inactivation due to a CGG expansion at the 5'UTR region of the gene. Early events in FMR1 silencing have not been fully characterized due to the lack of appropriate animal or cellular models. Here we show that, despite the presence of a full mutation, affected undifferentiated HESCs express FMR1 and are DNA unmethylated. However, epigenetic silencing by DNA methylation and histone modification occurs upon differentiation. Our unique cell system allows the dissection of the sequence by which these epigenetic changes are acquired and illustrates the importance of HESCs in unraveling developmentally regulated mechanisms associated with human genetic disorders.


Assuntos
Blastocisto/patologia , Diferenciação Celular/genética , Células-Tronco Embrionárias/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Mutação , Diagnóstico Pré-Implantação , Animais , Blastocisto/metabolismo , Linhagem Celular , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Inativação Gênica , Histonas/metabolismo , Humanos , Camundongos , Camundongos SCID , Teratoma/genética , Teratoma/patologia , Células Tumorais Cultivadas
20.
Stem Cells ; 24(8): 1923-30, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16675598

RESUMO

Human embryonic stem cells (HESCs) are pluripotent cells that may serve as a source of cells for transplantation medicine and as a tool to study human embryogenesis. Using genetic manipulation methodologies, we have investigated the potential of HESCs to differentiate into the various pancreatic cell types. We initially created various HESCs carrying the enhanced green fluorescent protein (eGFP) reporter gene under the control of either the insulin promoter or the pancreatic and duodenal homeobox factor-1 (Pdx1) promoter. Our analysis revealed that during the differentiation of HESCs into embryoid bodies (EBs), we could detect green fluorescent cells when eGFP is regulated by Pdx1 promoter but not by insulin promoter. To examine whether we can induce differentiation into pancreatic cells, we have established human embryonic stem cell lines that constitutively express either Pdx1 or the endodermal transcription factor Foxa2. Following differentiation into EBs, the constitutive expression of Pdx1 enhanced the differentiation of HESCs toward pancreatic endocrine and exocrine cell types. Thus, we have demonstrated expression of several transcription factors that are downstream of Pdx1 and various molecular markers for the different pancreatic cell types. However, the expression of the insulin gene could be demonstrated only when the cells differentiated in vivo into teratomas. We conclude that although overexpression of Pdx1 enhanced expression of pancreatic enriched genes, induction of insulin expression may require additional signals that are only present in vivo.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 3-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Pâncreas/citologia , Pâncreas/metabolismo , Transativadores/genética , Animais , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Fator 3-beta Nuclear de Hepatócito/biossíntese , Proteínas de Homeodomínio/biossíntese , Humanos , Insulina/genética , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Teratoma , Transativadores/biossíntese , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA