Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8942, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637556

RESUMO

This paper presents a fusion algorithm based on the enhanced RRT* TEB algorithm. The enhanced RRT* algorithm is utilized for generating an optimal global path. Firstly, proposing an adaptive sampling function and extending node bias to accelerate global path generation and mitigate local optimality. Secondly, eliminating path redundancy to minimize path length. Thirdly, imposing constraints on the turning angle of the path to enhance path smoothness. Conducting kinematic modeling of the mobile robot and optimizing the TEB algorithm to align the trajectory with the mobile robot's kinematics. The integration of these two algorithms culminates in the development of a fusion algorithm. Simulation and experimental results demonstrate that, in contrast to the traditional RRT* algorithm, the enhanced RRT* algorithm achieves a 5.8% reduction in path length and a 62.5% decrease in the number of turning points. Utilizing the fusion algorithm for path planning, the mobile robot generates a superior, seamlessly smooth global path, adept at circumventing obstacles. Furthermore, the local trajectory meticulously conforms to the kinematic constraints of the mobile robot.

2.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112443

RESUMO

In the field of AGV, a path planning algorithm is always a heated area. However, traditional path planning algorithms have many disadvantages. To solve these problems, this paper proposes a fusion algorithm that combines the kinematical constraint A* algorithm and the following dynamic window approach algorithm. The kinematical constraint A* algorithm can plan the global path. Firstly, the node optimization can reduce the number of child nodes. Secondly, improving the heuristic function can increase efficiency of path planning. Thirdly, the secondary redundancy can reduce the number of redundant nodes. Finally, the B spline curve can make the global path conform to the dynamic characteristics of AGV. The following DWA algorithm can be dynamic path planning and allow the AGV to avoidance moving obstacle. The optimization heuristic function of the local path is closer to the global optimal path. The simulation results show that, compared with the fusion algorithm of traditional A* algorithm and traditional DWA algorithm, the fusion algorithm reduces the length of path by 3.6%, time of path by 6.7% and the number of turns of final path by 25%.

3.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298145

RESUMO

With the rapid growth of railways in China, the focus has changed to the maintenance of large-scale rail structures. Multi-agent systems (MASs) based on wireless sensor network (WSNs) with soft multi-functional sensors (SMFS) are adopted cooperatively for the structural health monitoring of large-scale rail structures. An MAS framework with three layers, namely the sensing data acquisition layer, sensor data processing layer, and application layer, is built here for collaborative data collection and processing for a rail structure. WSN nodes with strain, temperature, and piezoelectric sensor units are developed for the continuous structural health monitoring of the rail structure. The feature data at different levels are extracted for the online monitoring of the rail structure. Experiments carried out at the Rail Transmit Base at East China Jiaotong University verify that the WSN nodes with SMFS are successfully assembled onto a 100-m-long track for damage detection. Based on the sensing data and feature data, a neural network data fusion agent (DFA) is applied to calculate the damage index value of the track for comprehensive decisions regarding rail damage. The use of WSNs with multi-functional sensors and intelligent algorithms is recommended for cooperative structural health monitoring in railways.


Assuntos
Redes Neurais de Computação , Tecnologia sem Fio , Humanos , Algoritmos , Coleta de Dados , China
4.
Sensors (Basel) ; 20(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183466

RESUMO

:Driving status monitoring is important to safety driving which could be adopted to improve driving behaviors through hand gesture detection by wearable electronics. The soft bimodal sensor array (SBSA) composed of strain sensor array based on ionic conductive hydrogels and capacitive pressure sensor array based on ionic hydrogel electrodes is designed to monitor drivers' hand gesture. SBSA is fabricated and assembled by the stretchable functional and structural materials through a sol-gel process for guaranteeing the overall softness of SBSA. The piezoresistive strain and capacitive pressure sensing abilities of SBSA are evaluated by the data acquisition system and signal analyzer with the external physical stimuli. The gauge factor (GF) of the strain sensor is 1.638 under stretched format, and -0.726 under compressed format; sensitivity of the pressure sensor is 0.267 kPa-1 below 3.45 and 0.0757 kPa-1 in the range of 3.45-12 kPa, which are sensitive enough to hand gesture detection and driving status monitoring. The simple recognition method for the driver's status behavior is proposed to identify the driver's behaviors with the piezoresistive properties of conductive polymers, and the turning angles are computed by the strain and pressure values from SBSA. This work demonstrates an effective approach to integrate SBSA seamlessly into an existing driving environment for driving status monitoring, expanding the applications of SBSA in wearable electronics.


Assuntos
Condução de Veículo , Condutividade Elétrica , Hidrogéis/química , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Acidentes de Trânsito/prevenção & controle , Eletrodos , Desenho de Equipamento , Mãos/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA