Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(1): 113-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32776685

RESUMO

BACKGROUND: The leaf surface microstructure can greatly influence predator feeding behavior. However, its effects on predator oviposition preference, which is crucial for arthropod fitness at the population level, are largely unknown. This study aimed to test leaf discs and plants of five common host plant species of Bemisia tabaci, including Chinese kale, cotton, cucumber, eggplant, and sweetpotato, to determine the oviposition preference and offspring and adult performance of the whitefly predator Serangium japonicum. Cannibalism risk, attachment force, microstructure of the abaxial leaf surface (ALS), and ladybeetle tarsal morphology were examined. RESULTS: Ladybeetle's oviposition preference had no correlation with offspring performance but positively correlated with fecundity. Further, oviposition preference to leaf discs and fecundity positively correlated with attachment force. The cannibalism risk was not significantly different between plant species. The ALS of Chinese kale and eggplant supported the smallest and the largest attachment forces, respectively. The first one had epicuticular wax crystals, whereas the latter had stellate trichomes. The ALS of cotton and sweetpotato did not bear wax crystals or long trichomes. Cucumber leaves were covered with tapered trichomes. Tenant setae on the distal second tarsomere and a pair of curved, tapered claws on the distal fourth tarsomere were the attachment structures of S. japonicum, which interacted with the plant surface structures and generated the attachment force. CONCLUSION: Plant morphological traits, associated with ladybeetle attachment force and adult performance might be key factors in ladybeetle oviposition preference, and are expected to occur in other host plant herbivore-predator systems.


Assuntos
Besouros , Hemípteros , Adulto , Animais , Feminino , Herbivoria , Humanos , Oviposição , Folhas de Planta
2.
Sci Rep ; 7: 40803, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112233

RESUMO

The whitefly Bemisia tabaci (Gennadius) is an important agricultural insect pest worldwide. The B and Q biotypes are the two most predominant and devastating biotypes prevalent across China. However, there are few studies regarding the occurrence of the Q biotype in Fujian Province, China, where high insecticide resistance has been reported in the B biotype. Differences in some biological characteristics between the B and Q biotypes, especially insecticide resistance, are considered to affect the outcome of their competition. Extensive surveys in Fujian revealed that the B biotype was predominant during 2005-2014, whereas the Q biotype was first detected in some locations in 2013 and widely detected throughout the province in 2014. Resistance to neonicotinoids (that have been used for more than 10 years) exhibited fluctuations in open fields, but showed a continual increasing trend in protected areas. Resistance to lambda-cyhalothrin, chlorpyrifos, and abamectin exhibited a declining trend. Resistance to novel insecticides, such as nitenpyram, pymetrozine, sulfoxaflor, and cyantraniliprole, in 2014 was generally below a moderate level. A decline in insecticide resistance in the B biotype and the rapid buildup of protected crops under global temperature increase may have promoted the establishment of the Q biotype in Fujian.


Assuntos
Biodiversidade , Hemípteros/classificação , Hemípteros/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Animais , China , Demografia , Ecossistema , Geografia
3.
Chemosphere ; 128: 49-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25655818

RESUMO

Given expectations for a booming usage of thiamethoxam and increasing availability of the promising biological agent Serangium japonicum for the control of Bemisia tabaci in China, an evaluation of their compatibility is crucial for integrated pest management (IPM). This study examined the lethal and sublethal effects of thiamethoxam on S. japonicum through three exposure routes. An acute toxicity bioassay showed that LC50 values of thiamethoxam for S. japonicum through residue contact, egg-dip, and systemic treatment were 6.65, 4.37, and 2.43 mg AI L(-1), respectively. The prey consumption of S. japonicum given different densities of B. tabaci eggs under control, discontinuous, egg-dip and systemic exposure scenarios showed a good fit to a Type II functional response. Predation of S. japonicum was most affected under systemic exposure, followed by egg-dip, and discontinuous, which was only slightly affected. In all cases tested, however, predators recovered their predation capacity rapidly, either after 24h of exposure or 24h after the end of exposure. Thiamethoxam was highly toxic to S. japonicum regardless of exposure routes. Sublethal effects of thiamethoxam applied systemically or foliar both impaired the biological control of S. japonicum on B. tabaci. Therefore, thiamethoxam should be used with caution in IPM of B. tabaci.


Assuntos
Besouros/efeitos dos fármacos , Inseticidas/toxicidade , Nitrocompostos/toxicidade , Oxazinas/toxicidade , Comportamento Predatório/efeitos dos fármacos , Tiazóis/toxicidade , Animais , China , Feminino , Neonicotinoides , Tiametoxam
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA