Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 22(3): 657, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386079

RESUMO

Melanoma, the most aggressive skin cancer, is mainly treated with BRAF inhibitors or immunotheareapy. However, most patients who initially responded to BRAF inhibitors or immunotheareapy become resistant following relapse. Ferroptosis is a form of regulated cell death characterized by its dependence on iron ions and the accumulation of lipid reactive oxygen species (ROS). Recent studies have demonstrated that ferroptosis is a good method for tumor treatment, and iron homeostasis is closely associated with ferroptosis. Iron regulatory protein (IRP)1 and 2 play important roles in maintaining iron homeostasis, but their functions in ferroptosis have not been investigated. The present study reported that the expression of IRP1 and IRP2 was increased by the ferroptosis inducers erastin and RSL3 in melanoma cells. Depletion of IRP1 significantly suppressed erastin- and RSL3-induced ferroptosis. IRP2 had a weak effect but could enhance the promoting function of IRP1 on ferroptosis. Further, erastin and RSL3 promoted the transition of aconitase 1 to IRP1, which regulated downstream iron metabolism proteins, including transferrin receptor (TFRC), ferroportin (FPN) and ferritin heavy chain 1 (FTH1). Moreover, overexpression of TFRC and knockdown of FPN and FTH1 significantly promoted erastin- and RSL3-induced ferroptosis in IRP1 knockdown melanoma cells. Collectively, the present findings indicate that IRP1 plays an essential role in erastin- and RSL3-induced ferroptosis by regulating iron homeostasis.

2.
Cell Signal ; 72: 109633, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283255

RESUMO

Ferroptosis is a regulated form of cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Ceruloplasmin (CP) is a glycoprotein that plays an essential role in iron homeostasis. However, whether CP regulates ferroptosis has not been reported. Here, we show that CP suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma (HCC) cells. Depletion of CP promoted erastin- and RSL3-induced ferroptotic cell death and resulted in the accumulation of intracellular ferrous iron (Fe2+) and lipid reactive oxygen species (ROS). Moreover, overexpression of CP suppressed erastin- and RSL3-induced ferroptosis in HCC cells. In addition, a novel frameshift mutation (c.1192-1196del, p.leu398serfs) of CP gene newly identified in patients with iron accumulation and neurodegenerative diseases lost its ability to regulate iron homeostasis and thus failed to participate in the regulation of ferroptosis. Collectively, these data suggest that CP plays an indispensable role in ferroptosis by regulating iron metabolism and indicate a potential therapeutic approach for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ceruloplasmina/metabolismo , Ferroptose , Homeostase , Ferro/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Antígenos CD/metabolismo , Carbolinas/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Ferroptose/efeitos dos fármacos , Mutação da Fase de Leitura/genética , Homeostase/efeitos dos fármacos , Humanos , Modelos Biológicos , Piperazinas/farmacologia , Receptores da Transferrina/metabolismo
3.
Nat Commun ; 11(1): 433, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974380

RESUMO

Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. Erastin, the ferroptosis activator, binds to voltage-dependent anion channels VDAC2 and VDCA3, but treatment with erastin can result in the degradation of the channels. Here, the authors show that Nedd4 is induced following erastin treatment, which leads to the ubiquitination and subsequent degradation of the channels. Depletion of Nedd4 limits the protein degradation of VDAC2/3, which increases the sensitivity of cancer cells to erastin. By understanding the molecular mechanism of erastin-induced cellular resistance, we can discover how cells adapt to new molecules to maintain homeostasis. Furthermore, erastin-induced resistance mediated by FOXM1-Nedd4-VDAC2/3 negative feedback loop provides an initial framework for creating avenues to overcome the drug resistance of ferroptosis activators.


Assuntos
Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Piperazinas/farmacologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Proteína Forkhead Box M1/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos Nus , Proteínas de Transporte da Membrana Mitocondrial/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitinação/efeitos dos fármacos , Canal de Ânion 2 Dependente de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Carcinog ; 58(11): 2149-2160, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31448838

RESUMO

Autophagy is a self-proteolytic process that degrades intracellular material to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master activator that regulates the transcription of genes involved in autophagy and lysosomal biogenesis. However, the cotranscriptional factors of TFEB are rarely identified. Here, we found that Yin Yang 1 (YY1) regulated autophagy and lysosome biogenesis in melanoma cells. YY1 cooperates with TFEB to regulate autophagy through controlling the transcription of autophagy and lysosome biogenesis related genes. Moreover, suppression of YY1 enhanced the antitumor efficiency of vemurafenib both in vitro and in vivo. Collectively, these studies identify YY1 as a novel cotranscription factor of TFEB in regulating autophagy and lysosomal functions and suggest YY1 could be a therapeutic target in cancer treatment.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Melanoma/genética , Fator de Transcrição YY1/genética , Animais , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Xenoenxertos , Humanos , Lisossomos/genética , Melanoma/patologia , Camundongos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA