RESUMO
Microplastics are difficult to degrade and widespread environmental pollutants. Coastal areas are hardest hit of microplastic pollution as they receive significant amounts of microplastics discharged from inland sources. Golden pompano (Trachinotus blochii) is a high commercial valuable marine aquaculture fish species, most of the golden pompano are raised in coastal areas, which means they are at significant risk of exposure to microplastics. Therefore, we exposed golden pompano to 10 µg/L, 100 µg/L and 1000 µg/L of 5 µm spherical polystyrene microplastics and conducted a 14-day stress experiment. Histopathology results showed the intestinal villi shrank. The 16s sequencing analysis revealed that microplastics significantly impacted the abundance and community structure of intestinal microorganisms, which may affect the metabolic function of the gastrointestinal tract. Metabolomics sequencing of the intestinal contents showed that microplastics caused disruptions in lipid, glucose, and amino acid metabolism, thus compromising the normal digestion and absorption functions in the intestinal system. In addition, the activation of various pathways, including the intestinal endocrine system, proline metabolism, and signal transduction, which can lead to the occurrence of several diseases. This study combined various methods to investigate the adverse effects of microplastics on intestinal digestion and absorption, and provided new insights into the toxic mechanisms of microplastics.
Assuntos
Intestinos , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Intestinos/efeitos dos fármacos , Peixes/metabolismo , Bactérias/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Digestão/efeitos dos fármacosRESUMO
Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.
Assuntos
Metilação de DNA , Animais , Masculino , Feminino , Gônadas/metabolismo , Hipóxia , Epigênese Genética , Peixes/genéticaRESUMO
Dissolved oxygen (DO) is essential for teleosts, and fluctuating environmental factors can result in hypoxic stress in the golden pompano (Trachinotus blochii). However, it is unknown whether different recovery speeds of DO concentration after hypoxia induce stress in T. blochii. In this study, T. blochii was subjected to hypoxic conditions (1.9 ± 0.2 mg/L) for 12 h followed by 12 h of reoxygenation at two different speeds (30 mg/L per hour and 1.7 mg/L per hour increasing). The gradual reoxygenation group (GRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 3 h, and the rapid reoxygenation group (RRG), experienced DO recovery (1.9 ± 0.2 to 6.8 ± 0.2 mg/L) within 10 min. Physiological and biochemical parameters of metabolism (glucose, glycegon, lactic acid (LD), lactate dehydrogenase (LDH), pyruvic acid (PA), phosphofructokinase (PFKA), and hexokinase (HK), triglyceride (TG), lipoprotein lipase (LPL), carnitine palmitoyltransferase 1 (CPT-1)) and transcriptome sequencing (RNA-seq of liver) were monitored to identify the effects of the two reoxygenation speeds. Increased LD content and increased activity of LDH, PA, PFKA, and HK suggested enhanced anaerobic glycolysis under hypoxic stress. LD and LDH levels remained significantly elevated during reoxygenation, indicating that the effects of hypoxia were not immediately alleviated during reoxygenation. The expressions of PGM2, PFKA, GAPDH, and PK were increased in the RRG, which suggests that glycolysis was enhanced. The same pattern was not observed in the GRG. Additionally, In the RRG, reoxygenation may promote glycolysis to guarantee energy supply. However, the GRG may through the lipid metabolism such as steroid biosynthesis at the later stage of reoxygenation. In the aspect of apoptosis, differentially expressed genes (DEGs) in the RRG were enriched in the p53 signaling pathway, which promoted cell apoptosis, while DEGs in the GRG seem to activate cell apoptosis at early stage of reoxygenation but was restrained latterly. DEGs in both the RRG and the GRG were enriched in the NF-kappa B and JAK-STAT signaling pathways, the RRG may induce cell survival by regulating the expression of IL-12B, COX2, and Bcl-XL, while in the GRG it may induce by regulating the expression of IL-8. Moreover, DEGs in the RRG were also enriched in the Toll-like receptor signaling pathway. This research revealed that at different velocity of reoxygenation after hypoxic stress, T. blochii would represent different metabolic, apoptotic and immune strategies, and this conclusion would provide new insight into the response to hypoxia and reoxygenation in teleosts.
Assuntos
Hipóxia , Oxigênio , Animais , Hipóxia/veterinária , Hipóxia/genética , Oxigênio/metabolismo , Peixes/metabolismo , Hipóxia Celular , Ácido Láctico , ImunidadeRESUMO
Globally, microplastics (MPs) are highly prevalent, especially in coastal areas. Unfortunately, golden pompano as a major marine fish in China is typically raised in floating marine cages near coasts, facing these MPs sources. However, toxicological studies on Golden Pompano which farm in coastal areas and face actual microplastic exposure are rare. Therefore, golden pompano were exposed to 10.0 µg/L, 100.0 µg/L, and 1000.0 µg/L polystyrene MPs (PS-MPs) for 14 days to study the potential impact of the microplastics on the Golden Pompano. Fish show slowed growth after 14 days of exposure. Histopathology shows irregular shaped nuclei and nuclear and cytoplasmic vacuolation traits in liver. Oxidative stress-related enzyme activity and gene expression data show that oxidative damage occurs in the high-concentrations (100.0 µg/L and 1000.0 µg/L) of PS-MPs exposures. Up-regulation of Grp78, Xbp-1, Eif-2α and chop gene expression indicates the occurrence of endoplasmic reticulum stress, and the western blot results also confirmed this. Severe oxidative stress also caused ERS, which ultimately increased BAX/Bcl-2 ratios and induces apoptosis. Furthermore, up-regulated anaerobic respiration, altered lipid metabolism, and immune disturbance were exhibited during PS-MPs stress. Therefore, oxidative stress appeared to be the main toxicity issue caused by MPs, while ERS-mediated apoptosis, metabolic alterations, and immune responses were induced by this stress. Notably, endoplasmic reticulum stress and apoptosis are a self-protective mechanism, which may be an intermediate link in the toxicity of microplastics. This study highlights the role of endoplasmic reticulum stress in MPs toxicology and assesses the adverse effects of microplastics on Golden Pompano.
Assuntos
Microplásticos , Plásticos , Animais , Microplásticos/toxicidade , Fígado , Poliestirenos/toxicidade , Estresse Oxidativo , Peixes , Apoptose , Retículo EndoplasmáticoRESUMO
Objective: To analyze the ultrasonic characteristics of false-negative and false-positive results of shear wave elastography (SWE) in the diagnosis of thyroid nodules to clarify the influence of nodular characteristics on SWE and to guide the clinical application of SWE. Methods: A total of 435 thyroid nodules from 343 patients with the diagnosis confirmed by surgical pathology were analyzed. Preoperative ultrasonography and SWE were conducted. The conventional ultrasound characteristics of thyroid nodules and the maximum Young's modulus were recorded. The false negativity and false positivity of SWE for the diagnosis of thyroid nodules were calculated. The ultrasonic characteristics of thyroid nodules with SWE false results were analyzed, and logistic regression analysis was adopted to determine the ultrasonic characteristics associated with SWE false results of thyroid nodules. Results: Among 323 malignant nodules, the SWE false negativity was 27.2% (88/323). The false positivity of SWE in 112 benign nodules was 19.6% (22/112). Regression analysis showed that an increase in the nodule volume increased the risk of SWE false-positive results (odds ratio [OR] 3.286; 95% confidence interval [CI]: 1.572-6.871; P = 0.002) and decreased the risk of false-negative results (OR 0.238; 95% CI: 0.115-0.493; P < 0.001). Nodules with coarse calcification had an increased risk of SWE false-positive results compared with those without calcification (OR 5.303; 95% CI: 1.098-25.619; P = 0.038). However, nodules with scattered hyperechoic foci had a reduced risk of SWE false-negative results (OR 0.515; 95% CI: 0.280-0.951; P = 0.034). Conclusion: Nodular size and calcification were correlated with SWE false results, and the clinical application of SWE should be combined with conventional ultrasound features. Fine needle aspiration or a puncture biopsy should be conducted if necessary.