Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781030

RESUMO

Acute Pancreatitis (AP) is among the most common hospital gastrointestinal diagnosis; understanding the mechanisms underlying the severity of AP are critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in two independent genetically engineered mouse models of AP. PFKFB3 is elevated in AP and severe AP (SAP) and knockout of Pfkfb3 abrogates the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies we define the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this dismal condition.

2.
Cell Rep ; 43(3): 113945, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483900

RESUMO

U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.


Assuntos
Fatores de Transcrição , Ubiquitina-Proteína Ligases , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína DEAD-box 58/metabolismo , Imunidade Inata , RNA Nuclear Pequeno , Ubiquitinação , Proteínas com Motivo Tripartido/metabolismo
3.
J Clin Pharmacol ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38375685

RESUMO

Ceftazidime/avibactam (CAZ/AVI) is a combination of a well-known third-generation, broad-spectrum cephalosporin with a new beta-lactamase inhibitor that has been approved for the treatment of various infectious diseases (especially multidrug-resistant Gram-negative bacterial infections) by the Food and Drug Administration (FDA). The current study extensively assessed CAZ/AVI-related adverse events (AEs) in the real world through data mining of the FDA Adverse Event Reporting System (FAERS) database to better understand toxicities. The signals of CAZ/AVI-related AEs were quantified using disproportionality analyses, including the reporting odds ratio, the proportional reporting ratio, the Bayesian confidence propagation neural network, and the multi-item gamma Poisson shrinker algorithms. Out of 10,114,815 records retrieved from the FAERS database, 628 cases were identified, where CAZ/AVI was implicated as the primary suspect drug. A total of 61 preferred terms with significant disproportionality that simultaneously met the criteria of all four algorithms were retained. Several unexpected safety signals may also occur, including melena, hypernatremia, depressed level of consciousness, brain edema, petechiae, delirium, and shock hemorrhagic. The median onset time for AEs associated with CAZ/AVI was 4 days, with most cases occurring within 3 days after CAZ/AVI initiation.

4.
J Med Chem ; 66(20): 14095-14115, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37843892

RESUMO

PARP-1/2 inhibitors have become an important therapeutic strategy for the treatment of HR-deficient tumors. However, discovery of new inhibitors with an improved and distinct pharmacological file still need enormous explorations. Herein, a series of novel highly potent PARP-1/2 inhibitors bearing an N-substituted piperazinone moiety were achieved. In particular, Cpd36 was identified as a distinct PARP inhibitor, showing remarkable enzymatic activity not only toward PARP-1 (IC50 = 0.94 nM) and PARP-2 (IC50 = 0.87 nM) but also toward PARP-7 (IC50 = 0.21 nM), as well as high selectivity over other PARP isoforms. Furthermore, Cpd36 was orally bioavailable and significantly repressed the tumor growth in both breast cancer and prostate cancer xenograft model. The crystal structures of Cpd36 within PARP-1 and PARP-2 together with the predicted binding mode within PARP-7 revealed its binding features and provided insightful information for further developing highly potent and selective PARP-1 and/or PARP-7 inhibitors.


Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Quinazolinas/farmacologia , Raios X , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
5.
Front Pharmacol ; 13: 865085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910366

RESUMO

PARP inhibitors have clinically demonstrated good antitumor activity in patients with BRCA mutations. Here, we described YHP-836, a novel PARP inhibitor, YHP-836 demonstrated excellent inhibitory activity for both PARP1 and PARP2 enzymes. It also allosterically regulated PARP1 and PARP2 via DNA trapping. YHP-836 showed cytotoxicity in tumor cell lines with BRCA mutations and induced cell cycle arrest in the G2/M phase. YHP-836 also sensitized tumor cells to chemotherapy agents in vitro. Oral administration of YHP-836 elicited remarkable antitumor activity either as a single agent or in combination with chemotherapy agents in vivo. These results indicated that YHP-836 is a well-defined PARP inhibitor.

6.
EMBO Rep ; 23(5): e53937, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35312140

RESUMO

LincRNA-EPS is an important regulator in inflammation. However, the role of lincRNA-EPS in the host response against viral infection is unexplored. Here, we show that lincRNA-EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV-1. Overexpression of lincRNA-EPS facilitates viral infection, while deficiency of lincRNA-EPS protects the host against viral infection in vitro and in vivo. LincRNA-EPS-/- macrophages show elevated expression of antiviral interferon-stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN-ß, the key upstream inducer of these ISGs, is downregulated in lincRNA-EPS-/- macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA-EPS binds to PKR and antagonizes the viral RNA-PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN-I induction. LincRNA-EPS inhibits PKR-STAT1-ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA-EPS promoting the induction of PKR-STAT1-dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.


Assuntos
RNA Longo não Codificante , Antivirais , Imunidade Inata , Interferon beta/genética , Interferons , RNA Longo não Codificante/genética , RNA Viral/metabolismo
7.
J Immunol ; 207(11): 2699-2709, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750204

RESUMO

IFN-γ-inducible protein 16 (IFI16) recognizes viral DNAs from both nucleus-replicating viruses and cytoplasm-replicating viruses. Isoform 2 of IFI16 (IFI16-iso2) with nuclear localization sequence (NLS) has been studied extensively as a well-known DNA sensor. However, the characteristics and functions of other IFI16 isoforms are almost unknown. Here, we find that IFI16-iso1, with exactly the same length as IFI16-iso2, lacks the NLS and locates in the cytoplasm. To distinguish the functions of IFI16-iso1 and IFI16-iso2, we have developed novel nuclear viral DNA mimics that can be recognized by the nuclear DNA sensors, including IFI16-iso2 and hnRNPA2B1. The hexanucleotide motif 5'-AGTGTT-3' DNA form of the nuclear localization sequence (DNLS) effectively drives cytoplasmic viral DNA nuclear translocation. These nuclear viral DNA mimics potently induce IFN-ß and antiviral IFN-stimulated genes in human A549 cells, HEK293T cells, and mouse macrophages. The subcellular location difference of IFI16 isoforms determines their differential functions in recognizing viral DNA and activating type I IFN-dependent antiviral immunity. IFI16-iso1 preferentially colocalizes with cytoplasmic HSV60mer and cytoplasm-replicating vaccinia virus (VACV), whereas IFI16-iso2 mainly colocalizes with nuclear HSV60-DNLS and nucleus-replicating HSV-1. Compared with IFI16-iso2, IFI16-iso1 induces more transcription of IFN-ß and IFN-stimulated genes, as well as stronger antiviral immunity upon HSV60mer transfection or VACV infection. IFI16-iso2, with the ability of nuclear-cytoplasmic shuttling, clears both invaded HSV type 1 and VACV significantly. However, IFI16-iso2 induces more type I IFN-dependent antiviral immunity than IFI16-iso1 upon HSV60-DNLS transfection or HSV type 1 infection. Our study has developed potent agonists for nuclear DNA sensors and also has demonstrated that IFI16 isoforms with cytoplasmic and nuclear locations play differential roles in innate immunity against DNA viruses.


Assuntos
Núcleo Celular/imunologia , Vírus de DNA/imunologia , Proteínas Nucleares/imunologia , Fosfoproteínas/imunologia , Células Cultivadas , Humanos , Isoformas de Proteínas/imunologia
8.
J Biol Chem ; 297(2): 100930, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216619

RESUMO

Interferon-γ-inducible factor 16 (IFI16) triggers stimulator of interferon (IFN) genes (STING)-dependent type I IFN production during host antiviral immunity and facilitates p53-dependent apoptosis during suppressing tumorigenesis. We have previously reported that STING-mediated IFI16 degradation negatively regulates type I IFN production. However, it is unknown whether STING also suppresses IFI16/p53-dependent apoptosis via degradation of IFI16. Here, our results from flow cytometry apoptosis detection and immunoblot assays show that IFI16 and nutlin-3, a p53 pathway activator, synergistically induce apoptosis in U2OS and A549 cells. Protein kinase R-triggered phosphorylation of p53 at serine 392 is critical for the IFI16-p53-dependent apoptosis. However, overexpression of STING suppresses p53 serine 392 phosphorylation, p53 transcriptional activity, expression of p53 target genes, and p53-dependent mitochondrial depolarization and apoptosis. In summary, our current study demonstrates that STING-mediated IFI16 degradation negatively regulates IFI16-mediated p53-dependent apoptosis in osteosarcoma and non-small cell lung cancer cells, which suggests a protumorigenic role for STING in certain cancer types because of its potent ability to degrade upstream IFI16.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteína Supressora de Tumor p53 , Apoptose , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Proteínas de Drosophila , Humanos , Imunidade Inata , Neoplasias Pulmonares , Fosforilação , Transdução de Sinais
9.
Pharmazie ; 76(4): 132-137, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33849696

RESUMO

To investigate structure-activity relationships of tankyrase (TNKS) inhibitors, twelve new derivatives of isoquinolin-1(2 H )-one were designed and synthesized, and biological assessments were conducted. Several potent TNKS inhibitors with single- or double-digit nanomolar IC50 values were identified using enzymatic assays. Compound 11c was the most potent compound of this series and inhibited TNKS1 and TNKS2 at an IC50 of 0.009 and 0.003 µM, respectively, and showed an IC50 of 0.029 µM in a DLD-1 SuperTopFlash assay. Molecular docking results showed that compound 11c occupied a unique subpocket and formed a hydrogen bond with Glu1138 of TNKS2, which was not consistent with the patterns of known TNKS inhibitors and thus warrants further research.


Assuntos
Inibidores Enzimáticos/farmacologia , Isoquinolinas/farmacologia , Tanquirases/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Isoquinolinas/síntese química , Isoquinolinas/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
10.
Immunology ; 163(2): 201-219, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33512718

RESUMO

Acute pancreatitis (AP), an inflammatory disorder of the pancreas with a high hospitalization rate, frequently leads to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). However, therapeutic targets for effective treatment and early intervention of AP are still urgently required to be identified. Here, we have observed that the expression of pancreatic lincRNA-EPS, a long intergenic non-coding RNA, is dynamically changed during both caerulein-induced AP (Cer-AP) and sodium taurocholate-induced severe AP (NaTc-SAP). The expression pattern of lincRNA-EPS is negatively correlated with the typical inflammatory genes such as IL-6, IL-1ß, CXCL1, and CXCL2. Further studies indicate that knockout of lincRNA-EPS aggravates the pathological symptoms of AP including more induction of serum amylase and lipase, severe edema, inflammatory cells infiltration and acinar necrosis in both experimental AP mouse models. Besides these intrapancreatic effects, lincRNA-EPS also protects against tissue damages in the extra-pancreatic organs such as lung, liver, and gut in the NaTc-SAP mouse model. In addition, we have observed more serum pro-inflammatory cytokines TNF-α and IL-6 in the lincRNA-EPS-/- NaTc-SAP mice and more extracellular HMGB1 around injured acinar cells in the pancreas from lincRNA-EPS-/- NaTc-SAP mice, compared with their respective controls. Pharmacological inhibition of NF- κ B activity by BAY11-7082 significantly abolishes the suppressive effect of lincRNA-EPS on TLR4 ligand-induced inflammatory genes in macrophages. Our study has described a protective role of lincRNA-EPS in alleviating AP and SAP, outlined a novel pathway that lincRNA-EPS suppresses HMGB1-NF- κ B-dependent inflammatory response in pancreatic macrophages and provided a potential therapeutic target for SAP.


Assuntos
Inflamação/genética , Macrófagos/fisiologia , Pâncreas/patologia , Pancreatite/genética , RNA Longo não Codificante/genética , Animais , Ceruletídeo , Modelos Animais de Doenças , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , NF-kappa B/metabolismo , Necrose , Índice de Gravidade de Doença , Ácido Taurocólico
11.
Front Oncol ; 9: 1029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649886

RESUMO

This study analyzes the correlation and interaction of miRNAs and mRNAs and their biological function in the malignant transformation of BEAS-2B cells induced by cigarette smoke (CS). Normal human bronchial epithelial cells (BEAS-2B) were continuously exposed to CS for 30 passages (S30) to establish an in vitro cell model of malignant transformation. The transformed cells were validated by scratch wound healing assay, transwell migration assay, colony formation and tumorigenicity assay. The miRNA and mRNA sequencing analysis were performed to identify differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) between normal BEAS-2B and S30 cells. The miRNA-seq data of lung cancer with corresponding clinical data obtained from TCGA was used to further identify lung cancer-related DEMs and their correlations with smoking history. The target genes of these DEMs were predicted using the miRDB database, and their functions were analyzed using the online tool "Metascape." It was found that the migration ability, colony formation rate and tumorigenicity of S30 cells enhanced. A total of 42 miRNAs and 753 mRNAs were dysregulated in S30 cells. The change of expression of top five DEGs and DEMs were consistent with our sequencing results. Among these DEMs, eight miRNAs were found dysregulated in lung cancer tissues based on TCGA data. In these eight miRNAs, six of them including miR-96-5p, miR-93-5p, miR-106-5p, miR-190a-5p, miR-195-5p, and miR-1-3p, were found to be associated with smoking history. Several DEGs, including THBS1, FN1, PIK3R1, CSF1, CORO2B, and PREX1, were involved in many biological processes by enrichment analysis of miRNA and mRNA interaction. We identified the negatively regulated miRNA-mRNA pairs in the CS-induced lung cancer, which were implicated in several cancer-related (especially EMT-related) biological process and KEGG pathways in the malignant transformation progress of lung cells induced by CS. Our result demonstrated the dysregulation of miRNA-mRNA profiles in cigarette smoke-induced malignant transformed cells, suggesting that these miRNAs might contribute to cigarette smoke-induced lung cancer. These genes may serve as biomarkers for predicting lung cancer pathogenesis and progression. They can also be targets of novel anticancer drug development.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117328, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31295632

RESUMO

Ethionine is an S-ethyl analog of methionine (Met) having a small change in structure. But it is a chemical carcinogen and an antagonist of Met, thus displaying a disparate biological profile. The oxidations of ethionine by biologically important oxidants have not been exploited. Oxidations of dl-ethionine by Pt(IV) anticancer model complexes trans-[PtX2(CN4)]2- (X = Cl or Br) were thus analyzed by time-resolved and stopped-flow spectral techniques. Overall second-order kinetics was established, being first-order in [Pt(IV)] and [Ethionine]tot (the total concentration of ethionine); the observed second-order rate constant k' versus pH profiles were obtained. A stoichiometry of Δ[Pt(IV)]:Δ[Ethionine]tot = 1:1 was unraveled, indicating that ethionine was oxidized to ethionine-sulfoxide which was confirmed by NMR spectroscopic and high-resolution mass spectral analyses. In the proposed reaction mechanism which is similar to that for the oxidation of Met by the same Pt(IV) compounds, the rate-determining steps are rationalized in terms of a bridge formation between one of the coordinated halides in [PtX2(CN4)]2- and the sulfur atom in ethionine, followed by an X+ transfer. Moreover, a large rate enhancement for the reaction of ethionine with [PtBr2(CN4)]2- compared with [PtCl2(CN4)]2- strongly supports an X+ transfer mechanism. Furthermore, a combined quantum-mechanical/molecular-mechanical (QM/MM) method was utilized to simulate a Cl+ transfer mechanism from trans-[PtCl2(CN)4]2- to ethionine. The simulations unraveled the energetically stable structures of reactants and products, which favor the Cl+ transfer process. Rate constants of the rate-determining steps have been derived. Ratios of k (ethionine)/k (Met) are between 2.2 and 2.6 obtained for the three protolytic species of ethionine and Met; the enhanced reactivity might be partially responsible for the disparate biological profiles.


Assuntos
Antineoplásicos/farmacologia , Etionina/química , Modelos Teóricos , Platina/farmacologia , Análise Espectral , Concentração de Íons de Hidrogênio , Cinética , Conformação Molecular , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Fatores de Tempo
13.
Org Biomol Chem ; 16(17): 3189-3202, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29648554

RESUMO

Novel quinazoline-2,4(1H,3H)-dione derivatives bearing a 3-amino pyrrolidine moiety were designed and synthesized as PARP-1/2 inhibitors. Structure-activity relationships were examined which revealed a number of potent PARP-1/2 inhibitors with moderate selectivity toward PARP-1 over PARP-2. These compounds had IC50 values against PARP-1 at the 10-9 M level and against PARP-2 at the 10-8 M level. Among all the synthesized compounds, compounds 10 and 11 displayed strong cytotoxicities which are either used as a single agent or in combination with temozolomide (TMZ) in MX-1 cells (10, IC50 < 3.12 µM, PF50 > 10; 11, IC50 = 3.02 µM, PF50 ≈ 10). In vivo tumor growth inhibition was investigated using compound 11 in combination with TMZ, and it was demonstrated that compound 11 could strongly potentiate the cytotoxicity of TMZ in a MX-1 xenograft tumor model. The co-crystal structure of compound 11 complexed with PARP-1 was achieved and demonstrated a unique binding mode.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Quinazolinas/química , Quinazolinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Camundongos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Quinazolinas/síntese química , Quinazolinas/farmacologia , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 23(4): 681-93, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25614115

RESUMO

Poly(ADP-ribose)polymerase-1 (PARP-1) has emerged as a promising anticancer drug target due to its key role in the DNA repair process. In this work, a novel series of 1-benzyl-quinazoline-2,4(1H,3H)-dione derivatives were designed and synthesized as human PARP-1 inhibitors, structure-activity relationships were conducted and led to a number of potent PARP-1 inhibitors having IC50 values of single or double digit nanomolar level. Compound 7j was a potent PARP-1 and PARP-2 inhibitor and it could selectively kill the breast cancer cells MX-1 and MDA-MB-468 with mutated BRCA1/2 and PTEN, respectively, in comparison with homologous recombination proficient cell types such as breast cancer cells MDA-MB-231. In addition, compound 7j displayed the strongest potentiation effect on temozolomide in MX-1 cells (PF50=3.77) in this series of PARP-1 inhibitors.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Quinazolinas/química , Quinazolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Mama/efeitos dos fármacos , Mama/enzimologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Relação Estrutura-Atividade
15.
Yao Xue Xue Bao ; 49(4): 497-503, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-24974467

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) has emerged as a promising anticancer drug target due to its key role in the DNA repair process. It can polymerize ADP-ribose units on its substrate proteins which are involved in the regulation of DNA repair. In this work, a novel series of para-substituted 1-benzyl-quinazoline-2, 4 (1H, 3H)-diones was designed and synthesized, and the inhibitory activities against PARP-1 of compounds 7a-7e, 8a-8f, 9a-9c and 10a-10c were evaluated. Of all the tested compounds, nine compounds displayed inhibitory activities with IC50 values ranging from 4.6 to 39.2 micromol x L(-1). In order to predict the binding modes of the potent molecules, molecular docking was performed using CDOCKER algorithm, and that will facilitate to further develop more potent PARP-1 inhibitors with a quinazolinedione scaffold.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Quinazolinonas/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases , Quinazolinonas/química , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA