RESUMO
Atherosclerosis is primarily an inflammatory reaction of the cardiovascular system caused by endothelial damage, leading to progressive thickening and hardening of the vessel walls, as well as extensive necrosis and fibrosis of the surrounding tissues, the most necessary pathological process causing cardiovascular disease. When the body responds to harmful internal and external stimuli, excess oxygen free radicals are produced causing oxidative stress to occur in cells and tissues. Simultaneously, the activation of inflammatory immunological processes is followed by an elevation in oxygen free radicals, which directly initiates the release of cytokines and chemokines, resulting in a detrimental cycle of vascular homeostasis abnormalities. Oxidative stress contributes to the harm inflicted upon vascular endothelial cells and the decrease in nitric oxide levels. Nitric oxide is crucial for maintaining vascular homeostasis and is implicated in the development of atherosclerosis. This study examines the influence of oxidative stress on the formation of atherosclerosis, which is facilitated by the vascular milieu. It also provides an overview of the pertinent targets and pharmaceutical approaches for treating this condition.
RESUMO
OBJECTIVES: To propose a histological-grades-based Osseous Tumor Radiological Interpretation and Management System (OT-RIMS) that would simplify the radiological evaluation of bone tumors, categorize key radiological features into severity levels, and inform corresponding patient management actions. METHODS: This retrospective study between January 2015 and August 2022 evaluated patients with solitary bone tumors confirmed by pathology and imaging follow-up received two or three imaging modalities of radiographs, CT, or MRI. Three radiologists independently assessed radiological features, categorized bone lesions based on OT-RIMS criteria, and reached a consensus. Kappa statistics and observed agreement were calculated. RESULTS: A total of 341 patients (mean age, 26.0 years; 159 women) were included, with 102 malignant, 177 benign, and 62 intermediate or low-grade malignant bone lesions. Sensitivity and specificity of readers 1, 2, and 3, respectively, in the identification of malignant tumors into OT-RIMS 4 were 93.1% (95 of 102) and 93.3% (223 of 239), 96.1% (98 of 102) and 91.6% (219 of 239), 92.2% (94 of 102) and 89.5% (214 of 239). Inter-reader agreement of OT-RIMS category for three readers was considered excellent (Kendall's W = 0.924, p < 0.001) with a kappa value of reproducibility in categories 1&2, 3, and 4 of 0.764, 0.528, and 0.930, respectively. CONCLUSION: The OT-RIMS category demonstrated excellent reproducibility despite the reader's expertise level in categorizing the risk stratification of bone tumors and informing patient management, with histological grades used as the reference standard. ADVANCES IN KNOWLEDGE: The OT-RIMS category reliably stratifies bone tumors into four categories corresponding to histological grades and standardized patient management.
RESUMO
Scorpion-shaped hybrid double helicenes, consisting of a [5] or [6] carbohelicene and an aza[4]helicene, have been successfully constructed by orthogonal alkyne annulations via an aryl C-I bond and amido N-H bond from polyaromatic ring-fused iodoisocoumarins. In spite of the unexpected instability upon aerobic oxidation upon ambient visible light irradiation over several days, both ultraviolet-visible absorption and photoluminescence spectra along with density functional theory calculations of these helicenes have been studied, which rely heavily on the bent polyaromatic ring-fused quinolizinone conjugate skeleton. In addition, the Stokes shifts of hybrid double helicenes are generally larger than those of the structurally similar mono-carbohelicenes.
RESUMO
An unprecedented divergent aromatization reaction of α-halobenzyl γ-butenolides has been described for the selective and concise synthesis of highly substituted benzo and higher π-extended fluorenones, and 1,3-disubstituted naphthalenes depending on the migration ability of the quaternary α-substituent. This aromatization switch from Ag+-mediated planarization to ylidenebutenolides likely originates from selective protonation on the enolic double bond rather than the benzyl halides by TfOH.
RESUMO
A topological magnetic material showcases a multitude of intriguing properties resulting from the compelling interplay between topology and magnetism. These include notable phenomena such as a large anomalous Nernst effect (ANE), an anomalous Hall effect (AHE), and a topological Hall effect (THE). In most cases, topological transport phenomena are prevalent at temperatures considerably lower than room temperature, presenting a challenge for practical applications. However, the noncollinear ferromagnetic (FM) LaMn2Ge2, characterized by a Mn square-net lattice and a notably high Curie temperature (TC) of approximately 325 K, defies this trend as a topological semimetal. This work observes a giant topological Hall resistivity, ρ y x T $\rho _{yx}^T$ , of ≈4.5 µΩ cm at room temperature when the angle between the applied field and the c-axis is 75°, which is significantly higher than state-of-the-art materials with noncoplanar spin structures. The single crystal neutron diffraction measurements agree with an incommensurate conical magnetic structure as the ground state. This observation suggests the enhanced spin chirality resulting from the noncoplanar spin configuration when the applied field is away from the magnetic easy axis as the origin of a large contribution to the observed THE. The findings unequivocally demonstrate that the FM LaMn2Ge2 holds great promise as a potential topological semimetal for spintronic applications even at room temperature.
RESUMO
Immunodeficient murine models are usually used as the preclinical models of osteosarcoma. Such models do not effectively simulate the process of tumorigenesis and metastasis. Establishing a suitable animal model for understanding the mechanism of osteosarcoma and the clinical translation is indispensable. The UMR-106 cell suspension was injected into the marrow cavity of Balb/C nude mice. Tumor masses were harvested from nude mice and sectioned. The tumor fragments were transplanted into the marrow cavities of SD rats immunosuppressed with cyclosporine A. Through muti-rounds selection in SD rats, we constructed orthotopic osteosarcoma animal models using rats with intact immune systems. The primary tumor cells were cultured in-vitro to obtain the immune-tolerant cell line. VX2 tumor fragments were transplanted into the distal femur and parosteal radius of New Zealand white rabbit to construct orthotopic osteosarcoma animal models in rabbits. The rate of tumor formation in SD rats (P1 generation) was 30%. After four rounds of selection and six rounds of acclimatization in SD rats with intact immune systems, we obtained immune-tolerant cell lines and established the orthotopic osteosarcoma model of the distal femur in SD rats. Micro-CT images confirmed tumor-driven osteolysis and the bone destruction process. Moreover, the orthotopic model was also established in New Zealand white rabbits by implanting VX2 tumor fragments into rabbit radii and femurs. We constructed orthotopic osteosarcoma animal models in rats with intact immune systems through muti-rounds in-vivo selection and the rabbit osteosarcoma model.
Assuntos
Neoplasias Ósseas , Modelos Animais de Doenças , Osteossarcoma , Animais , Osteossarcoma/patologia , Osteossarcoma/imunologia , Coelhos , Ratos , Neoplasias Ósseas/patologia , Neoplasias Ósseas/imunologia , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Ratos Sprague-Dawley , Microtomografia por Raio-X , Camundongos Endogâmicos BALB C , Imunocompetência , Humanos , Transplante de Neoplasias , Fêmur/patologia , Fêmur/diagnóstico por imagem , MasculinoRESUMO
Wounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties. In this study, we first prepared edible rose-derived exosome-like nanoparticles (ELNs) and used them to encapsulate antimicrobial peptides (AMP), abbreviated as ELNs(AMP). ELNs(AMP) showed superior intracellular antibacterial activity, 2.5 times greater than AMP, in in vitro cell infection assays. We then prepared and tested an FDA-approved fibrin-gel of fibrinogen and thrombin encapsulating ELNs(AMP) and novobiocin sodium salt (NB) (ELNs(AMP)/NB-fibrin-gels). The fibrin gel showed a sustained release of ELNs(AMP) and NB over the eight days of testing. After spraying onto the skin, the formulation underwent in situ gelation and developed a stable patch with excellent hemostatic performance in a mouse liver injury model with hemostasis in 31 s, only 35.6 % of the PBS group. The fibrin gel exhibited pro-wound healing properties in the mouse-infected skin defect model. The thickness of granulation tissue and collagen of the ELNs(AMP)/NB-fibrin-gels group was 4.00, 6.32 times greater than that of the PBS group. In addition, the ELNs(AMP)/NB-fibrin-gels reduced inflammation (decreased mRNA levels of TNF-α, IL-1ß, IL6, MCP1, and CXCL1) at the wound sites and demonstrated a biocompatible and biosafe profile. Thus, we have developed a hydrogel system with excellent hemostatic, antibacterial, and pro-wound healing properties, which may be a candidate for next-generation tissue regeneration with a wide clinical application for first-aid hemostasis and infected wound healing.
Assuntos
Antibacterianos , Exossomos , Fibrina , Hemostasia , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Hemostasia/efeitos dos fármacos , Camundongos , Fibrina/química , Antibacterianos/farmacologia , Antibacterianos/química , Exossomos/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Humanos , Infecção dos Ferimentos/tratamento farmacológico , Nanopartículas/química , Géis/química , Hidrogéis/química , Hidrogéis/farmacologia , MasculinoRESUMO
Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.
RESUMO
In the clinic, inactivation of osteosarcoma using microwave ablation would damage the periosteum, resulting in frequent postoperative complications. Therefore, the development of an artificial periosteum is crucial for postoperative healing. In this study, we prepared an artificial periosteum using silk fibroin (SF) loaded with stromal cell-derived factor-1α (SDF-1α) and calcitonin gene-related peptide (CGRP) to accelerate bone remodeling after the microwave ablation of osteosarcoma. The prepared artificial periosteum showed a sustained release of SDF-1α and CGRP after 14 days of immersion. In vitro culture of rat periosteal stem cells (rPDSCs) demonstrated that the artificial periosteum is favorable for cell recruitment, the activity of alkaline phosphatase, and bone-related gene expression. Furthermore, the artificial periosteum improved the tube formation and angiogenesis-related gene expression of human umbilical vein endothelial cells (HUVECs). In an animal study, the periosteum in the femur of a rabbit was inactivated through microwave ablation and then removed. The damaged periosteum was replaced with the as-prepared artificial periosteum and favored bone regeneration. In all, the designed dual-factor-loaded artificial periosteum is a promising strategy to replace the damaged periosteum in the therapy of osteosarcoma for a better bone-rebuilding process.
Assuntos
Osteossarcoma , Periósteo , Ratos , Humanos , Animais , Coelhos , Quimiocina CXCL12/genética , Quimiocina CXCL12/farmacologia , Peptídeo Relacionado com Gene de Calcitonina , Células Endoteliais , Regeneração ÓsseaRESUMO
The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth in vivo. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for in vivo tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.
Assuntos
Imunoterapia , Lisossomos , Receptores da Transferrina , Receptores da Transferrina/metabolismo , Receptores da Transferrina/imunologia , Lisossomos/metabolismo , Humanos , Animais , Camundongos , Membrana Externa Bacteriana/metabolismo , Feminino , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Antígeno B7-H1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
Plant-derived exosome-like nanoparticles(PELNs) are a class of membranous vesicles with diameters approximately ranging from 30 to 300 nm, isolated from plant tissues. They contain components such as proteins, lipids, and nucleic acids. PELNs play an important role in the metabolism of plant substances and immune defense, and can also cross-regulate the physiological activities of fungi and animal cells, showing significant potential applications. In recent years, research on PELNs has significantly increased, highlighting three main issues:(1) the mixed sources of plant materials for PELNs;(2) the lack of a unified system for isolating and characterizing PELNs;(3) the urgent need to elucidate the molecular mechanisms underlying the cross-regulation of biological functions by PELNs. This article focused on these concerns. It began by summarizing the biological origin and composition of PELNs, discussing the techniques for isolating and characterizing PELNs, and analyzing their biomedical applications and potential future research directions., aiming to promote the establishment of standardized research protocols for PELNs and provide theoretical references for in-depth exploration of the mechanisms underlying PELNs' cross-regulatory effects.
Assuntos
Exossomos , Nanopartículas , Ácidos Nucleicos , Animais , Exossomos/metabolismo , Proteínas/metabolismo , Plantas/metabolismoRESUMO
Neuropathic pain is a debilitating chronic pain condition and is refractory to the currently available treatments. Emerging evidence suggests that melatonin exerts analgesic effects in rodent models of neuropathic pain. Nevertheless, the exact underlying mechanisms of the analgesic effects of melatonin on neuropathic pain are largely unknown. Here, we observed that spinal nerve ligation (SNL) in rats L5 and L6 induced an obvious decrease in the 50% paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), indicating the induction of mechanical allodynia and the hyperalgesia, and melatonin prevented the genesis and maintenance of mechanical allodynia and the hyperalgesia. Notably, the inhibitory action of melatonin on SNL-induced mechanical allodynia and heat hypersensitivity was inhibited by a SIRT1 inhibitor (EX527). Melatonin treatment increased the expression of neuronal sirtuin1 (SIRT1) in DRGs following nerve injury. Furthermore, melatonin treatment restored the injury-dependent decrease in mitochondrial membrane potential and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and reduced the injury-dependent increase in hydrogen peroxide and 8-hydroxy-2-deoxyguanosine (8-OHdG), which was inhibited by EX527. In addition, we found that EX527 impeded the inhibitory effects of melatonin on the SNL-induced increased expression of cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). In conclusion, the above data demonstrated that melatonin alleviated mechanical allodynia and hyperalgesia induced by peripheral nerve injury via SIRT1 activation. Melatonin resolved mitochondrial dysfunction-oxidative stress-dependent and neuroinflammation mechanisms that were driven by SIRT1 after nerve injury.
Assuntos
Melatonina , Neuralgia , Ratos , Animais , Hiperalgesia/metabolismo , Sirtuína 1/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Neuralgia/metabolismo , Nervos Espinhais/lesões , Mitocôndrias/metabolismo , AnalgésicosRESUMO
STUDY DESIGN: Retrospective case series. OBJECTIVE: To investigate the accuracy of seven scoring systems for the prediction of survival in lung cancer patients with spinal metastases (SPM). SUMMARY OF BACKGROUND DATA: Although survival scoring systems have been developed for surgical decision-making, the reliability and validity of these models are unclear for specific cancer types. As the prevalence of patients with lung cancer increases, it is imperative to determine the accuracy of these models for lung cancer patients with SPM. MATERIALS AND METHODS: This is a retrospective study of a cohort of lung cancer patients with SPM who underwent spine surgery between 2019 and 2021 at two centers. The optimal area under the curve (AUC) was calculated to evaluate the accuracy of seven candidate scoring systems at 3, 6, and 12 months. Calibration and decision curve analysis was used for further validation. RESULTS: A total of 166 patients (mean age: 58.98±10.94; 105 males and 61 females) with SPM were included. The median postoperative survival was 12.87±0.93 months. The modified Bauer score, revised Tokuhashi score, Linden score, Tomita score, the Skeletal Oncology Research Group nomogram, and the New England Spinal Metastasis Score in prediction survival at 3, 6, and 12 months showed a slightly weaker AUC (range 0.464-0.659). The AUC of the Katagiri-New score in predicting 1-year survival for lung cancer patients was the highest (0.708; range 0.619-0.798). The decision curve analysis showed that the Katagiri-New score led to a greater net benefit than the strategies of changing management for all patients or none of the patients. CONCLUSIONS: This study suggests that the most commonly used models have limitations in predicting survival in patients undergoing spinal surgery for metastatic lung cancer and underestimate survival. In this sample of lung cancer patients, the Katagiri-New Scoring system score had the best performance in predicting 1-year survival. LEVEL OF EVIDENCE: 4.
Assuntos
Neoplasias Pulmonares , Neoplasias da Coluna Vertebral , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Neoplasias da Coluna Vertebral/secundário , Estudos Retrospectivos , Prognóstico , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologiaRESUMO
Magnetic interactions in combination with nontrivial band structures can give rise to several exotic physical properties such as a large anomalous Hall effect, the anomalous Nernst effect, and the topological Hall effect (THE). Antiferromagnetic (AFM) materials exhibit the THE due to the presence of nontrivial spin structures. EuCuAs crystallizes in a hexagonal structure with an AFM ground state (Néel temperature â¼ 16 K). In this work, we observe a large topological Hall resistivity of â¼7.4 µΩ-cm at 13 K which is significantly higher than the giant topological Hall effect of Gd2PdSi3 (â¼3 µΩ-cm). Neutron diffraction experiments reveal that the spins form a transverse conical structure during the metamagnetic transition, resulting in the large THE. In addition, by controlling the magnetic ordering structure of EuCuAs with an external magnetic field, several fascinating topological states such as Dirac and Weyl semimetals have been revealed. These results suggest the possibility of spintronic devices based on antiferromagnets with tailored noncoplanar spin configurations.
RESUMO
Weyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two. If these WPs are located at the Fermi level, they form an ideal Weyl semimetal (WSM). In this study, intrinsic ferromagnetic (FM) EuCd2 As2 are grown, predicted to be an ideal WSM and studied its electronic structure by angle-resolved photoemission spectroscopy, and scanning tunneling microscopy which agrees closely with the first principles calculations. Moreover, anomalous Hall conductivity and Nernst effect are observed, resulting from the non-zero Berry curvature, and the topological Hall effect arising from changes in the band structure caused by spin canting produced by magnetic fields. These findings can help realize several exotic quantum phenomena in inorganic topological materials that are otherwise difficult to assess because of the presence of multiple pairs of Weyl nodes.
RESUMO
Rare earth elements (REEs) have been long applied in magnesium alloys, among which the mischmetal-containing WE43 alloy has already got the CE mark approval for clinical application. A considerable amount of REEs (7 wt%) is needed in that multi-phased alloy to achieve a good combination of mechanical strength and corrosion resistance. However, the high complex RE addition accompanied with multiple second phases may bring the concern of biological hazards. Single-phased Mg-RE alloys with simpler compositions were proposed to improve the overall performance, i.e., "Simpler alloy, better performance". The single-phased microstructure can be successfully obtained with typical high-solubility REEs (Ho, Er or Lu) through traditional smelting, casting and extrusion in a wide compositional range. A good corrosion resistance with a macroscopically uniform corrosion mode was guaranteed by the homogeneously single-phased microstructure. The bimodal-grained structure with plenty of sub-grain microstructures allow us to minimize the RE addition to <1 wt%, without losing mechanical properties. The single-phased Mg-RE alloys show comparable mechanical properties to the clinically-proven Mg-based implants. They exhibited similar in-vitro and in-vivo performances (without local or systematic toxicity in SD-rats) compared to a high purity magnesium. In addition, metal elements in our single-phased alloys can be gradually excreted through the urinary system and digestive system, showing no consistent accumulation of RE in main organs, i.e., less burden on organs. The novel concept in this study focuses on the simplification of Mg-RE based alloys for biomedical purpose, and other biodegradable metals with single-phased microstructures are expected to be explored.
RESUMO
Cancer therapies usually suffer from poor targeting ability and serious side effects. Photoactivatable cancer therapy has the significant advantage of a high spatiotemporal resolution, but most photoactivatable prodrugs require decoration with stoichiometric photocleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a photoactivation strategy with biogenic riboflavin as the photosensitizer to promote the in situ transformation of noncytotoxic dihydroalkaloid prodrugs dihydrochelerythrine (DHCHE), dihydrosanguinarine (DHSAN), and dihydronitidine (DHNIT) into anticancer alkaloid drugs chelerythrine (CHE), sanguinarine (SAN), and nitidine (NIT), respectively, which can efficiently kill cancer cells and inhibit in vivo tumor growth. Meanwhile, the photoactivatable transformation can be in situ monitored by green-to-red fluorescence conversion, which will contribute to easy controlling of the therapeutic dose. The proposed photoactivatable transformation mechanism was also explored by density functional theory (DFT) calculations. We believe this riboflavin-promoted and imaging-guided photoactivation strategy is promising for precise cancer therapy.
Assuntos
Neoplasias , Pró-Fármacos , Pró-Fármacos/farmacologia , Neoplasias/tratamento farmacológicoRESUMO
Bone implants with the photothermal effect are promising for the treatment of bone tumor defects. Noble metal-based photothermal nanoagents are widely studied for their stable photothermal effect, but they are expensive and difficult to directly grow on implant surfaces. In contrast, non-noble metal photothermal nanoagents are economical but unstable. Herein, to develop a stable and economical photothermal film on bone implants, a Ni nanoparticle-doped oxide semiconductor film was grown in situ on Nitinol via the reduction of Ni-Ti-layered double hydroxides. Ni nanoparticles remained stable in the NiTiO3 structure even when immersed in fluid for 1 month, and thus, the film presented a reliable photothermal effect under near-infrared light irradiation. The film also showed excellent in vitro and in vivo antitumor performance. Moreover, the nanostructure on the film allowed bone differentiation of mouse embryo cells (C3H10T1/2), and the released Ni ions supported the angiogenesis behavior of human vein endothelial cells. Bone implantation experiments further showed the enhancement of osteointegration of the modified Nitinol implant in vivo. This novel multifunctional Nitinol bone implant design offers a promising strategy for the therapy of bone tumor-related defects.
Assuntos
Neoplasias Ósseas , Nanopartículas Metálicas , Nanopartículas , Humanos , Camundongos , Animais , Óxidos , Células Endoteliais , Regeneração Óssea , Neoplasias Ósseas/tratamento farmacológico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Hidróxidos , SemicondutoresRESUMO
Band structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Γ band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb. Previous efforts have shown how crystallographic defects play an important role in TiCoSb transport properties, while the intrinsic properties remain elusive. Using hard X-ray photoelectron spectroscopy (HAXPES), we discard the presence of interstitial defects that could induce in-gap states near the valence band in our crystals. Contrary to polycrystalline reports, intrinsic TiCoSb exhibits p-type transport, albeit defects still affect the carrier concentration. In two initially identical p-type TiCoSb crystal batches, distinct metallic and semiconductive behaviors were found owing to defects not noticeable by elemental analysis. A varying Seebeck effective mass is consistent with the change at the Fermi level within this band convergence picture. This report tackles the direct investigation of the electronic structure of TiCoSb and reveals new insights and the strong impact of point defects on the optimization of thermoelectric properties.
RESUMO
Macrophages play a vital role for guiding the fate of osteogenesis- related cells. It is well known that nano-topography and bioactive ions can directly enhance osteogenic behavior. However, the effects of nano-structure combined with bioactive ions release on macrophage polarization and the following osteogenesis and angiogenesis are rarely reported. Herein, Mg(OH)2 films with nano-sheet structures were constructed on the surface of Ti using hydrothermal treatment. The film presented nano-sheet topography and sustained release of Mg ions. The results of in vitro culture of bone marrow-derived macrophages (BMDMs), including PCR, western blot and flow cytometry suggested that the nano-Mg(OH)2 films were more favorable for macrophages polarizing to tissue healing M2 phenotype. Moreover, air-pouch model confirmed that the nano-Mg(OH)2 film coated Ti would induce milder inflammation and thinner fibrous layer in vivo, compared with untreated Ti. Furthermore, macrophages-conditioned culture mediums were collected from nano-Mg(OH)2 coated Ti group was superior for the osteogenic behaviors of mice bone marrow stem cells and the angiogenic behaviors of human umbilical vein endothelial cells. With harmonious early inflammatory response and subsequently improved osteogenesis and angiogenesis, the nano-Mg(OH)2 coated Ti is promising for orthopedic applications.