RESUMO
AIM: To evaluate chronic ocular sequelae in patients with symblepharon caused by ocular burns and propose an objective grading system. METHODS: This was a retrospective, single-center clinical study. Patients with symblepharon caused by ocular burns at least six months later were assessed. Chronic ocular sequelae were classified into 3 categories (eyelid, conjunctiva, and cornea) and 9 chronic ocular sequelae [friction factors, exposure factors, conjunctival hyperemia, length of symblepharon, scope of adhesion, lacrimal area adhesion, loss of the palisades of Vogt (POV), corneal neovascularization, and corneal opacification]. Each ocular sequela was graded from 0 to 3, depending on the increasing severity. The 9 ocular sequelae were evaluated to obtain the total severity score for each eye. The total severity score was defined as Grade I (1-9), Grade II (10-18), and Grade III (19-27). Moreover, the correlation between the severity of chronic ocular sequelae and visual acuity, surgical strategy, and the prognosis was analyzed, respectively. RESULTS: Cases of 79 eyes with symblepharon caused by ocular burns were included in this study. Of these, 20 (25.32%) were defined as Grade I, 43 (54.43%) as Grade II, and 16 (20.25%) as Grade III. Eyes with a high total severity score had reduced visual acuity, required complicated surgery strategies, and poor prognosis (P<0.001). Multivariate regression analysis showed that the scope of adhesion, corneal opacification, and corneal neovascularization significantly affected visual acuity, surgical strategy, and prognosis (all P<0.001). CONCLUSION: The evaluation of chronic ocular sequelae enabled the development of an objective grading system for patients with symblepharon caused by ocular burns. This grading system can be applied to guide the treatment and predict the prognosis.
RESUMO
AIM: To explore the effects of conditioned media on the proliferation of corneal endothelial cells (CECs) and to compare the efficiency of different conditioned media (CM). METHODS: Rat CECs, corneal stromal cells (CSCs), bone marrow-derived endothelial progenitor cells (BEPCs), and bone marrow-derived mesenchymal stem cells (BMSCs) were isolated and cultured in vitro. CM was collected from CSCs, BEPCs, and BMSCs. CECs were cultivated in different culture media. Cell morphology was recorded, and gene and protein expression were analyzed. RESULTS: After grown in CM for 5d, CECs in each experimental group remained polygonal, in a cobblestone-like monolayer arrangement. Immunocytofluorescence revealed positive expression of Na(+)/K(+)-ATP, aquaporin 1 (AQP1), and zonula occludens 1 (ZO-1). Based on quantitative polymerase chain reaction (qPCR) analysis, Na(+)/K(+)-ATP expression in CSC-CM was notably upregulated by 1.3-fold (±0.036) (P<0.05, n=3). The expression levels of ZO-1, neuron specific enolase (NSE), Vimentin, paired homebox 6 (PAX6), and procollagen type VIII (COL8A1) were notably upregulated in each experimental group. Each CM had a positive effect on CEC proliferation, and CSC-CM had the strongest effect on proliferation. CONCLUSION: CSC-CM, BEPC-CM, and BMSC-CM not only stimulated the proliferation of CECs, but also maintained the characteristic differentiated phenotypes necessary for endothelial functions. CSC-CM had the most notable effect on CEC proliferation.