Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(16): 24547-24558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446294

RESUMO

Sediments are the vital fate of organic compounds, and the recognition of organic compounds in sediments is constructive in providing comprehensive and long-term information. In this study, a three-step nontarget screening (NTS) analysis workflow using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS) revealed the extensive existence of organic compounds in the Taipu River sediment. Organic compounds (705) were detected and divided into four structure-related groups or eight use-related classes. In the Taipu River's mainstream, a significant difference was found in the composition profiles of the identified organic compounds among various sites, demonstrating the organic compounds were more abundant in the midstream and downstream than in the upstream. Meanwhile, the hydrodynamic force was recognized as a potential factor influencing organic compounds' occurrence. Based on multiple statistical analyses, the shipping and textile printing industries were considered the significant contributors to the identified organic compounds. Considering the principles of the priority substances and the current status of the substances, two traditional pollutants and ten emerging organic compounds were recognized as the priority organic compounds for the Taipu River. Conclusively, this study established a workflow for NTS analysis of sediment samples and demonstrated the necessity of NTS analysis to evaluate the impact of terrestrial emissions of organic compounds on the aquatic environment.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Compostos Orgânicos/análise , China
2.
Artigo em Inglês | MEDLINE | ID: mdl-36011761

RESUMO

In Taipu River, after being transformed from a drainage channel to a drinking water supply river in 1995, heavy metals that have accumulated in sediments have become an environmental issue. Herein, we collected sediments of Taipu River in 2018, 2020, and 2021 and analyzed the distribution of Sb, As, Cd, Cu, Pb, Cr, and Zn to identify their sources. The results revealed that the mean concentrations of heavy metals were above the background values, except for Cr and As. During the non-flood season, the midstream of Taipu River becomes a heavy metal hotspot, with their concentrations 2-5 times higher than those in upstream sediment. There were significant correlations (r = 0.79-0.99) among drainage, precipitation and flow rate, which indicated that drainage caused by both the opening of Taipu Gate and precipitation control the flow rate and, then, possibly influenced the distribution of heavy metals. Moreover, three sources (industrial sources, particle deposition sources, and natural sources) were characterized as the determinants for the accumulation of heavy metal by the Positive Matrix Factorization model, with the contribution rates of 41.7%, 32.9%, and 25.4%, respectively. It is recommended that the influence of hydrological conditions and industrial activities should be a key consideration when developing regulations for the management of heavy metals in rivers.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 812: 152649, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953834

RESUMO

Limited information is known about organophosphate esters (OPEs) in sediments of the Dong Nai River System (DNRS) in Vietnam and the influences of complex hydro-sedimentary dynamics on their fate. In this study, 48 surface sediment samples were collected from the Dong Nai-Soai Rap River and its tributary Vam Co River for the determination of 11 target OPEs, together with grain size and total organic carbon (TOC). The total concentrations of OPEs were in the range of 39.4 ng/g dw-373 ng/g dw (mean: 128 ng/g dw), and tris(1-chloro-2-propyl) phosphate (TCPP) was the predominant one with an average contribution of 81%, followed by tri-n-butyl phosphate (TNBP), tris(2-ethylhexyl) phosphate (TEHP). The composition profiles of OPEs at different locations of the DNRS showed no significant differences (p > 0.05). In addition, the distribution of OPEs had been influenced by both human activities and the fluvial-tidal interactions. The highly frequent and various human activities in Ho Chi Minh City (HCMC) leaded to the highest total concentration of OPEs in the midstream site. Based on our dataset, TOC content and grain size of sediments had significant correlation with certain OPEs (p < 0.05), and sediments with higher TOC content and finer grain size in the DNRS were more likely to be deposited in the downstream reach, contributing to the estuary of the DNRS was identified as another hotspot with the second highest concentration of OPEs. Furthermore, the distribution of OPEs in the transects had distinct characteristics, which reflected the joint influence of the human activities and fluvial-tidal interaction as well. However, the mechanism of their influence needed further investigation.


Assuntos
Retardadores de Chama , China , Monitoramento Ambiental , Ésteres , Retardadores de Chama/análise , Atividades Humanas , Humanos , Organofosfatos , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA