Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37702503

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Assuntos
Quitina , Polissacarídeos , Quitina/metabolismo , Polissacarídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Celulose/metabolismo , Parede Celular/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-27408621

RESUMO

BACKGROUND: Lentiviral vectors (LV) are widely used for various gene transfer or gene therapy applications. The effects of LV on target cells are expected to be limited to gene delivery. Yet, human hematopoietic CD34+ cells respond to functional LVs as well as several types of non-integrating LVs by genome-wide DNA methylation changes. RESULTS: A new algorithm for the analysis of 450K Illumina data showed that these changes were marked by de novo methylation. The same 4126 cytosines located in islands corresponding to 1059 genes were systematically methylated. This effect required cellular entry of the viral particle in the cells but not the genomic integration of the vector cassette. Some LV preparations induced only mild sporadic changes while others had strong effects suggesting that LV batch heterogeneity may be related to the extent of the epigenetic response. CONCLUSION: These findings identify a previously uncharacterized but consistent cellular response to viral components and provide a novel example of environmentally modified epigenome.

3.
PLoS One ; 9(7): e101644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25058148

RESUMO

Gene transfer vectors such as lentiviral vectors offer versatile possibilities to express transgenic antigens for vaccination purposes. However, viral vaccines leading to broad transduction and transgene expression in vivo, are undesirable. Therefore, strategies capable of directing gene transfer only to professional antigen-presenting cells would increase the specific activity and safety of genetic vaccines. A lentiviral vector pseudotype specific for murine major histocompatibilty complex class II (LV-MHCII) was recently developed and the present study aims to characterize the in vivo biodistribution profile and immunization potential of this vector in mice. Whereas the systemic administration of a vector pseudotyped with a ubiquitously-interacting envelope led to prominent detection of vector copies in the liver of animals, the injection of an equivalent amount of LV-MHCII resulted in a more specific biodistribution of vector and transgene. Copies of LV-MHCII were found only in secondary lymphoid organs, essentially in CD11c+ dendritic cells expressing the transgene whereas B cells were not efficiently targeted in vivo, contrary to expectations based on in vitro testing. Upon a single injection of LV-MHCII, naive mice mounted specific effector CD4 and CD8 T cell responses against the intracelllular transgene product with the generation of Th1 cytokines, development of in vivo cytotoxic activity and establishment of T cell immune memory. The targeting of dendritic cells by recombinant viral vaccines must therefore be assessed in vivo but this strategy is feasible, effective for immunization and cross-presentation and constitutes a potentially safe alternative to limit off-target gene expression in gene-based vaccination strategies with integrative vectors.


Assuntos
Células Dendríticas/imunologia , Genes MHC da Classe II , Imunidade Celular/efeitos dos fármacos , Lentivirus/genética , Vacinas Virais/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Células Dendríticas/citologia , Expressão Gênica , Vetores Genéticos , Imunização , Memória Imunológica , Injeções Intravenosas , Lentivirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Equilíbrio Th1-Th2 , Vacinas Sintéticas , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese , Vacinas Virais/genética
4.
Development ; 138(17): 3647-56, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828093

RESUMO

Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Toxina Diftérica/farmacologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Fator de Transcrição PAX7/genética , Regeneração/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Arthritis Rheum ; 58(8): 2356-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18668557

RESUMO

OBJECTIVE: Blocking tumor necrosis factor (TNF) effectively inhibits inflammation and joint damage in rheumatoid arthritis (RA), but 40% of RA patients respond only transiently or not at all to the current anti-TNF biotherapies. The purpose of this study was to develop an alternative targeted therapy for this subgroup of RA patients. As proof of concept, we tested the efficiency of an RNA interference (RNAi)-based intervention that targets proinflammatory cytokines in suppressing murine collagen-induced arthritis (CIA). METHODS: Two synthetic short interfering RNA (siRNA) sequences were designed for each of the proinflammatory cytokines interleukin-1 (IL-1), IL-6, and IL-18. Their silencing specificity was assessed according to lipopolysaccharide-induced messenger RNA expression in J774.1 mouse macrophages as compared with control siRNA. For in vivo administration, siRNA were formulated as lipoplexes with the RPR209120/DOPE liposome and a carrier DNA and were injected intravenously (0.5 mg/kg) into DBA/1 mice with CIA. RESULTS: Weekly injections of anti-IL-1, anti-IL-6, or anti-IL-18 siRNA-based lipoplexes significantly reduced the incidence and severity of arthritis, abrogating joint swelling and destruction of cartilage and bone, both in the preventative and the curative settings. The most striking therapeutic effect was observed when the 3 siRNA were delivered in combination. The siRNA lipoplex cocktail reduced all pathologic features of RA, including inflammation, joint destruction, and the Th1 response, and overall parameters of RA were improved as compared with anti-TNF siRNA lipoplex-based treatment. CONCLUSION: Our results present a novel option for in vivo RNAi-based antiinflammatory immunotherapy. Our findings indicate that intravenous administration of a lipoplex cocktail containing several anticytokine siRNA is a promising novel antiinflammatory therapy for RA, as well as a useful and simple tool for understanding the pathophysiology of RA and for evaluating new therapeutic candidates.


Assuntos
Artrite Experimental/tratamento farmacológico , Interleucina-18/antagonistas & inibidores , Interleucina-1/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , RNA Interferente Pequeno/uso terapêutico , Animais , Artrite Experimental/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Quimioterapia Combinada , Inativação Gênica , Injeções Intravenosas , Lipossomos , Camundongos , Camundongos Endogâmicos DBA , RNA Interferente Pequeno/administração & dosagem , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA