Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(29): e2404423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767186

RESUMO

Establishing an advanced ecosystem incorporating freshwater harvesting, plastic utilization, and clean fuel acquisition is profoundly significant. However, low-efficiency evaporation, single energy utilization, and catalyst leakage severely hinder sustainable development. Herein, a nanofiber-based mortise-and-tenon structural Janus aerogel (MTSJA) is strategically designed in the first attempt and supports Z-scheme catalysts. By harnessing of the upper hydrophilic layer with hydrophilic channels embedding into the hydrophobic bottom layer to achieve tailoring bottom wettability states. MTSJA is capable of a fully-floating function for lower heat loss, water supply, and high-efficiency solar-to-vapor conversion. Benefiting from the ultrasonic cavitation effect and high sensitivity of materials to mechanical forces, this is also the first demonstration of synergistic solar and ultrasound fields to power simultaneous evaporation desalination and waste plastics as reusable substrates generating fuel energy. The system enables persistent desalination with an exceptional evaporation rate of 3.1 kg m-2 h-1 and 82.3% efficiency (21 wt.% NaCl solution and 1 sun), and realizes H2, CO, and CH4 yields with 16.1, 9.5, and 3 µmol h-1 g-1, respectively. This strategy holds great potential for desalination and plastics value-added transformation toward clean energy and carbon neutrality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA