Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Phytomedicine ; 128: 155431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537440

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Assuntos
Abietanos , Carcinoma Pulmonar de Células não Pequenas , Estresse do Retículo Endoplasmático , Neoplasias Pulmonares , Fatores de Transcrição NFATC , Abietanos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Fatores de Transcrição NFATC/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Proto-Oncogene Mas , Antígeno B7-H1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor de Morte Celular Programada 1 , Imunoterapia/métodos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células A549 , Camundongos Nus , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-myc/metabolismo , Masculino , Feminino
2.
Chem Biol Drug Des ; 103(1): e14408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009559

RESUMO

The emergency of tyrosine kinase inhibitors has remarkably enhanced the clinical outcomes of cancer therapy, especially the use of EGFR inhibitors for non-small cell lung cancer (NSCLC). However, acquired resistance is inevitable after 8-12 months treatment. New agents or treatments are urgently required to resolve this problem. In this study, we identified that compound ZYZ384 can selectively inhibit the growth of gefitinib-resistant (G-R) lung cancer cells, without affecting that of normal lung epithelial cells. ZYZ384 induced G2 arrest in G-R NSCLC cells, decreasing the expression of Cyclin B1 and increasing the expression of P21. Meanwhile, ZYZ384 also induced apoptosis in NSCLC cells and correspondingly increased the expression of cleaved Caspase 3, 8, and 9 proteins. The expression of p-JNK, p-P38, and p-ERK were also increased in H1975 NSCLC cells treated with ZYZ384. Finally, we observed that the JNK inhibitor effectively reversed the pro-apoptotic effect of ZYZ384. In conclusion, ZYZ384 is a potential therapeutic agent to inhibit the growth of NSCLCs with EGFR mutations through activating JNK, which will help the development of related anticancer drugs.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinazolinas/farmacologia , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Apoptose , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
Chem Commun (Camb) ; 59(90): 13514-13517, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37885376

RESUMO

Aberrant PCK2 overexpression has been linked to an unfavorable prognosis and shorter survival, particularly in hepatocellular carcinoma (HCC). Thus, the inactivation of PCK2 provides a promising strategy for HCC treatment. In this study, we used a chemical genetic strategy to identify a natural-derived small-molecule cucurbitacin B (CuB) as a selective PCK2 inhibitor. CuB covalently bound to PCK2 at a unique Cys63 site, blocking the Ω-loop lid domain formation via a previously undisclosed allosteric mechanism. Additionally, targeted lipidomics analysis also revealed that CuB destroyed mitochondrial membrane integrity, leading to the disruption of mitochondrial fusion-fission dynamics. Taken together, this study highlights the discovery of a small-molecule CuB, which reprograms lipid metabolism for controlling mitochondrial dynamics via targeting PCK2 in cancer cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Dinâmica Mitocondrial , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Regulação Alostérica , Fosfoenolpiruvato Carboxiquinase (ATP)
4.
Chem Biol Drug Des ; 102(4): 857-869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563791

RESUMO

SARS-CoV-2 chymotrypsin-like cysteine protease (3CLpro ) is one of the most widely developed drug targets for COVID-19. This study aimed to design and synthesize isatin derivatives to target SARS-CoV-2 3CLpro in a covalent binding manner. Through the process, a potent 3CLpro inhibitor (5g) was discovered with an IC50 value of 0.43 ± 0.17 µM. To understand the binding affinity and specificity of 5g as a candidate inhibitor of SARS-CoV-2 3CLpro , several assays were conducted, including FRET enzyme activity assays, thermodynamic-based and kinetic-based validation of inhibitor-target interactions, and cell-based FlipGFP assays. The interaction mechanism between 3CLpro -5g was characterized by docking. Overall, these findings suggest that 5g is a new potent SARS-CoV-2 3CLpro inhibitor for the treatment of COVID-19.


Assuntos
COVID-19 , Isatina , Humanos , SARS-CoV-2 , Isatina/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Termodinâmica , Antivirais/química , Simulação de Acoplamento Molecular
5.
Heliyon ; 9(5): e15812, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37305501

RESUMO

Although some important advances have been achieved in clinical and diagnosis in the past few years, the management of non-small cell lung cancer (NSCLC) is ultimately dissatisfactory due to the low overall cure and survival rates. Epidermal growth factor (EGFR) has been recognized as a carcinogenic driver and is a crucial pharmacological target for NSCLC. DMU-212, an analog of resveratrol, has been reported to have significant inhibitory effects on several types of cancer. However, the effect of DMU-212 on lung cancer remains unclear. Therefore, this study aims to determine the effects and underlying mechanism of DMU-212 on EGFR-mutant NSCLC cells. The data found that the cytotoxicity of DMU-212 on three EGFR-mutant NSCLC cell lines was significantly higher than that of normal lung epithelial cell. Further study showed that DMU-212 can regulate the expression of cell cycle-related proteins including p21 and cyclin B1 to induce G2/M phase arrest in both H1975 and PC9 cells. Moreover, treatment with DMU-212 significantly promoted the activation of AMPK and simultaneously down-regulated the expression of EGFR and the phosphorylation of PI3K, Akt and ERK. In conclusion, our study suggested that DMU-212 inhibited the growth of NSCLCs via targeting of AMPK and EGFR.

6.
Expert Opin Investig Drugs ; 32(2): 101-106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36749819

RESUMO

INTRODUCTION: KRAS G12C targeted covalent inhibitors for cancer therapy are revolutionary. However, resistance to KRAS G12C inhibitors in clinical trials is a proven fact. AREAS COVERED: The authors focus on providing coverage and emphasizing the strategy of conquering KRAS G12C inhibitor resistance from the perspective of clinical therapy. The authors also provide the readers with their expert perspectives for future development. EXPERT OPINION: It is essential to improve the therapeutic effect and achieve long-term disease control through accumulating rapid exploration of drug resistance mechanisms in preclinical trials and developing rational combination dosing approaches from clinical practice. Our presentation of the perspective provides insights into drug resistance in this groundbreaking area of research.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Pharmacol Res ; 187: 106565, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414124

RESUMO

A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Inibidores da Topoisomerase II , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
8.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232570

RESUMO

In late 2019, a new coronavirus (CoV) caused the outbreak of a deadly respiratory disease, resulting in the COVID-19 pandemic. In view of the ongoing pandemic, there is an immediate need to find drugs to treat patients. SARS-CoV-2 papain-like cysteine protease (PLpro) not only plays an important role in the pathogenesis of the virus but is also a target protein for the development of inhibitor drugs. Therefore, to develop targeted inhibitors, it is necessary to analyse and verify PLpro sites and explore whether there are other cryptic binding pockets with better activity. In this study, first, we detected the site of the whole PLpro protein by sitemap of Schrödinger (version 2018), the cavity of LigBuilder V3, and DeepSite, and roughly judged the possible activated binding site area. Then, we used the mixed solvent dynamics simulation (MixMD) of probe molecules to induce conformational changes in the protein to find the possible cryptic active sites. Finally, the TRAPP method was used to predict the druggability of cryptic pockets and analyse the changes in the physicochemical properties of residues around these sites. This work will help promote the research of SARS-CoV-2 PLpro inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , Papaína , Sequência de Aminoácidos , Proteases Semelhantes à Papaína de Coronavírus , Humanos , Pandemias , Papaína/metabolismo , SARS-CoV-2 , Solventes
9.
Pharmacol Res ; 186: 106514, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36252771

RESUMO

Multiple drug resistance (MDR) is the major obstacle for both chemotherapy and molecular-targeted therapy for cancer, which is mainly caused by overexpression of ABC transporters or genetic mutation of drug targets. Based on previous studies, we hypothesized that ROS/Nrf2 is the common target for overcoming acquired drug resistance to both targeted therapy and chemotherapy treatments. In this study, we firstly proved that the levels of ROS and Nrf2 were remarkably up-regulated in both H1975 (Gefitinib-resistant lung cancer cells with T790M) and A549/T (paclitaxel-resistant) cells, which is consistent with the clinical database analysis results of lung cancer patients that Nrf2 expression level is negatively related to survival rate. Nrf2 Knockdown with siRNA or tangeretin (TG, a flavonoid isolated from citrus peels) inhibited the MDR cell growth by suppressing the Nrf2 pathway, and efficiently enhanced the anti-tumor effects of paclitaxel and AZD9291 (the third generation of TKI) in A549/T or H1975, respectively. Moreover, TG sensitized A549/T cells-derived xenografts to paclitaxel via inhibiting Nrf2 and its downstream target P-gp, leading to an increased paclitaxel concentration in tumors. Collectively, targeting Nrf2 to enhance ROS may be a common target for overcoming the acquired drug resistance and enhancing the therapeutic effects of chemotherapy and molecular-targeted therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores ErbB/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinazolinas/farmacologia , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio , Resistencia a Medicamentos Antineoplásicos , Mutação , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Resistência a Múltiplos Medicamentos
10.
Medicine (Baltimore) ; 101(41): e31027, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36254028

RESUMO

Pleural effusion (PE) is a common manifestation of tuberculosis (TB) and malignant tumors but tuberculous PE (TPE) is difficult to distinguish from malignant PE (MPE), especially by noninvasive detection indicators. This study aimed to find effective detection indices in blood and PE for differentiating TB from a malignant tumor. A total of 815 patients who were diagnosed with TB or cancer in Hubei Shiyan Taihe Hospital from 2014 to 2017 were collected. Amongst them, 717 were found to have PE by thoracoscopy. Clinical characteristics, patients' blood parameters and PE indicator information were summarized for analysis. Patients with MPE had higher percentages to be bloody and negative of Rivalta test in PE than those with TPE. For clinical indicators, comparison of the specific parameters in blood showed that 18 indicators were higher in the TPE group than in the MPE group. By contrast, 12 indicators were higher in the MPE group than in the TPE group (P < .01). In addition, in PE tests, 3 parameters were higher in the TPE group, whereas other 4 parameters were higher in the MPE group (P < .01). Then, for clinical diagnosing practice, ROC analysis and principal component analysis were applied. The top 6 relevant indicators with area under curve over 0.70 were screened out as follows: hydrothorax adenosine dehydrogenase (pADA, 0.90), hydrothorax high-sensitivity C reactive protein (0.79), percentage of blood monocyte (sMONp, 0.75), blood high-sensitivity C reactive protein (sHsCRP, 0.73), erythrocyte sedimentation rate (0.71) and blood D-dimer (0.70). Moreover, logistic regression model revealed that a specific combination of 3 biomarkers, namely, pADA, sMONp and sHsCRP, could enhance the distinguishment of TB from malignant tumor with PE (area under curve = 0.944, 95% confidence interval = 0.925-0.964). The diagnostic function of the top single marker pADA in patients from different groups was analyzed and it was found to maintain high specificity and sensitivity. The 6 indicators, namely, pADA, hydrothorax high-sensitivity C reactive protein, sMONp, sHsCRP, sESR and blood D-dimer, showed significant diagnostic value for clinicians. Further, the combination of pADA, sMONp and sHsCRP has high accuracy for differential diagnosis for the first time. Most interestingly, the single marker pADA maintained high specificity and sensitivity in patients with different statuses and thus has great value for rapid and accurate diagnosis of suspected cases.


Assuntos
Hidrotórax , Derrame Pleural Maligno , Derrame Pleural , Tuberculose Pleural , Tuberculose , Adenosina , Biomarcadores , Biomarcadores Tumorais , Proteína C-Reativa , Humanos , Oxirredutases , Derrame Pleural/diagnóstico , Derrame Pleural/etiologia , Derrame Pleural/metabolismo , Derrame Pleural Maligno/metabolismo , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose Pleural/diagnóstico
11.
Front Oncol ; 12: 941643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965565

RESUMO

Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.

12.
Front Pharmacol ; 13: 854965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677437

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) plays a predominant role in cancer immunotherapy which catalyzes the initial and rate limiting steps of the kynurenine pathway as a key enzyme. To explore novel IDO1 inhibitors, five derivatives of erlotinib-linked 1,2,3-triazole compounds were designed by using a structure-based drug design strategy. Drug-target interactions (DTI) were predicted by DeePurpose, an easy-to-use deep learning library that contains more than 50 algorithms. The DTI prediction results suggested that the designed molecules have potential inhibitory activities for IDO1. Chemical syntheses and bioassays showed that the compounds exhibited remarkable inhibitory activities against IDO1, among them, compound e was the most potent with an IC50 value of 0.32 ± 0.07 µM in the Hela cell assay. The docking model and ADME analysis exhibited that the effective interactions of these compounds with heme iron and better drug-likeness ensured the IDO1 inhibitory activities. The studies suggested that compound e was a novel and interesting IDO1 inhibitor for further development.

13.
Pharmacol Res ; 179: 106198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367343

RESUMO

Despite recent advances in diagnosis and therapeutic strategies, treatment of non-small-cell lung cancer (NSCLC) remains unsatisfactory in terms of prognosis. Andrographolide (AD), a principal active component of Andrographis paniculata (Burm.f.) Nees, exerts anti-cancer therapeutic properties. AD has been used for centuries in China for clinical treatment of viral infections. However, the pharmacological biology of AD in NSCLC remains unknown. In this study, AD regulated autophagy and PD-L1 expression in NSCLC. Molecular dynamics simulations indicated that AD bound directly to signal transducer and activator of transcription-3 (STAT3) with high affinity. Proteomics analysis indicated that AD reduced the expression of tumour PD-L1 in NSCLC by suppressing JAK2/STAT3 signalling. AD modulated the P62-dependent selective autophagic degradation of PD-L1 by inhibiting STAT3 phosphorylation. In vivo study revealed that AD suppressed tumour growth in H1975 xenograft mice and Lewis lung carcinoma cell models, and better efficacy was obtained at higher concentrations. AD prolonged the survival time of the mice and enhanced the treatment efficacy of anti-PD-1 mAb immunotherapy by stimulating CD8+ T cell infiltration and function. This work elucidated the specific mechanism by which AD inhibited NSCLC. Treatment with the combination of AD and anti-PD-1 mAb immunotherapy could be a potential strategy for patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Autofagia , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diterpenos , Humanos , Imunidade , Neoplasias Pulmonares/metabolismo , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Chem Biol Drug Des ; 99(1): 83-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288496

RESUMO

Lung cancer is the leading cause of cancer death. Pyronaridine, a synthetic drug of artemisinin, has been used in China for over 30 years for the treatment of malaria, but its effect on non-small cell lung cancer (NSCLC) cells is rarely reported. In this study, we determined the efficacy of pyronaridine in four different NSCLC cell lines and explored its mechanism in H1975. The data showed that pyronaridine could upregulate the expression of TNF-related apoptosis-inducing ligand (TRAIL)-mediated death receptor 5 to promote cellular apoptosis. Meanwhile, the JNK (c-Jun N-terminal kinase) level was detected to be significantly increased after treating with pyronaridine. We used JNK inhibitor and found that it could partially inhibit cell apoptosis. The results showed that epidermal growth factor receptor (EGFR), PI3K, and AKT were downregulated after the treatment of pyronaridine. In summary, pyronaridine can selectively kill NSCLC by regulating TRAIL-mediated apoptosis and downregulating the protein level of EGFR. It is a promising anticancer drug for NSCLC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Naftiridinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Naftiridinas/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Phytomedicine ; 95: 153786, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785104

RESUMO

BACKGROUND: Lung cancer has become the principal cause of cancer-related deaths. Emodin is a Chinese herb-derived compound extracted from the roots of Rheum officinale that exhibits numerous pharmacological characteristics. Secretory phospholipase A2-IIa (sPLA2-IIa) is overexpressed in cancers and plays an important role in cancer development. PURPOSE: This study aims to investigate the anti-tumor mechanism of emodin in non-small-cell lung cancer (NSCLC). METHODS: MTT assay was applied to detect the sensitivity of emodin to NSCLC cell line. Flow cytometry was used to examine the effect of emodin on cell cycle distribution and evaluate ROS level and apoptosis. Western blot analysis was utilised to examine the expression levels of sPLA2-IIa, PKM2, and AMPK and its downstream pathways induced by emodin. Enzyme inhibition assay was applied to investigate the inhibitory effect of emodin on sPLA2-IIa. The anticancer effect of emodin was also detected using an in vivo model. RESULTS: Emodin significantly inhibited NSCLC proliferation in vivo and in vitro and was relatively less cytotoxic to normal lung cell lines. Most importantly, emodin inhibited the proliferation of KRAS mutant cell lines by decreasing the expression of sPLA2-IIa and NF-κB pathways. Emodin also inhibited mTOR and AKT and activated the AMPK pathway. Furthermore, emodin induced apoptosis, increased the reactive oxygen species (ROS) level, and arrested the cell cycle. CONCLUSION: Emodin exhibited a novel anti-tumor mechanism of inhibiting the proliferation of KRAS mutant cell lines by decreasing the expression levels of sPLA2-IIa and NF-κB pathways. Hence, emodin can potentially serve as a therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Emodina , Neoplasias Pulmonares , Fosfolipases A2 Secretórias , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação para Baixo , Emodina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico
16.
Pharmacol Ther ; 229: 108050, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864132

RESUMO

KRAS mutations are one of the most frequent activating alterations in carcinoma. Recent efforts have witnessed a revolutionary strategy for KRAS G12C inhibitors with exhibiting conspicuous clinical responses across multiple tumor types, providing new impetus for renewed drug development and culminating in sotorasib with approximately 6-month median progression-free survival in KRAS G12C-driven lung cancer. However, diverse genomic and histological mechanisms conferring resistance to KRAS G12C inhibitors may limit their clinical efficacy. Herein, we first briefly discuss the recent resistance looms for KRAS G12C inhibitors, focusing on their clinical trials. We then comprehensively interrogate and underscore our current understanding of resistance mechanisms and the necessity of incorporating genomic analyses into the clinical investigation to further decipher resistance mechanisms. Finally, we highlight the future role of novel treatment strategies especially rational identification of targeted combinatorial approaches in tackling drug resistance, and propose our views on including the application of robust biomarkers to precisely guide combination medication regimens.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
17.
Phytomedicine ; 96: 153831, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34794861

RESUMO

BACKGROUND: Currently, the identification of accurate biomarkers for the diagnosis of patients with early-stage lung cancer remains difficult. Fortunately, metabolomics technology can be used to improve the detection of plasma metabolic biomarkers for lung cancer. In a previous study, we successfully utilised machine learning methods to identify significant metabolic markers for early-stage lung cancer diagnosis. However, a related research platform for the investigation of tumour metabolism and drug efficacy is still lacking. HYPOTHESIS/PURPOSE: A novel methodology for the comprehensive evaluation of the internal tumour-metabolic profile and drug evaluation needs to be established. METHODS: The optimal location for tumour cell inoculation was identified in mouse chest for the non-traumatic orthotopic lung cancer mouse model. Microcomputed tomography (micro-CT) was applied to monitor lung tumour growth. Proscillaridin A (P.A) and cisplatin (CDDP) were utilised to verify the anti-lung cancer efficacy of the platform. The top five clinically valid biomarkers, including proline, L-kynurenine, spermidine, taurine and palmitoyl-L-carnitine, were selected as the evaluation indices to obtain a suitable lung cancer mouse model for clinical metabolomics research by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). RESULTS: The platform was successfully established, achieving 100% tumour development rate and 0% surgery mortality. P.A and CDDP had significant anti-lung cancer efficacy in the platform. Compared with the control group, four biomarkers in the orthotopic model and two biomarkers in the metastatic model had significantly higher abundance. Principal component analysis (PCA) showed a significant separation between the orthotopic/metastatic model and the control/subcutaneous/KRAS transgenic model. The platform was mainly involved in arginine and proline metabolism, tryptophan metabolism, and taurine and hypotaurine metabolism. CONCLUSION: This study is the first to simulate clinical metabolomics by comparing the metabolic phenotype of plasma in different lung cancer mouse models. We found that the orthotopic model was the most suitable for tumour metabolism. Furthermore, the anti-tumour drug efficacy was verified in the platform. The platform can very well match the clinical reality, providing better lung cancer diagnosis and securing more precise evidence for drug evaluation in the future.


Assuntos
Neoplasias Pulmonares , Preparações Farmacêuticas , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica , Camundongos , Espectrometria de Massas em Tandem , Microtomografia por Raio-X
18.
Fitoterapia ; 153: 104948, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34087409

RESUMO

A norbisabolane and an arabitol benzoate, Talaromarnine A (1), Talaromarnine B (2), together with eight known compounds were obtained from cultures of Talaromyces marneffei, an endophytic fungus of Epilobium angustifolium. Their structures were elucidated by IR, MS, 1D and 2D NMR spectra, and their absolute configuration was determined by single-crystal X-ray diffraction and molecular computation. These compounds were tested for monoamine oxidase, acetylcholinesterase and PI3K inhibitory activity, but no compounds exhibited significant activities.


Assuntos
Benzoatos/isolamento & purificação , Epilobium/microbiologia , Álcoois Açúcares/isolamento & purificação , Talaromyces/química , Benzoatos/química , China , Endófitos/química , Estrutura Molecular , Álcoois Açúcares/química
19.
Pharmacol Res ; 169: 105656, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964470

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most frequently diagnosed cancers and the leading causes of cancer death worldwide. Therefore, new therapeutic agents are urgently needed to improve patient outcomes. Plumbagin (PLB), a natural sesquiterpene present in many Chinese herbal medicines, has been reported for its anti-cancer activity in various cancer cells. In this study, the effects and underlying mechanisms of PLB on the tumorigenesis of NSCLC were investigated. PLB dose-dependently inhibited the growth of NSCLC cell lines. PLB promoted ROS production, activated the endoplasmic reticulum (ER) stress pathway, and induced cell apoptosis, accompanied by the decreased expression level of ADP-ribosylation factor 1 (ARF1) in NSCLC cancer cells, and those effects of PLB could be reversed by the pretreatment with N-acetyl-L-cysteine (NAC). More importantly, the calcium chelator (BM) significantly reversed PLB-induced cell apoptosis. Furthermore, PLB significantly inhibited the growth of both H1975 xenograft and LLC1 tumors and exhibited antitumor activity by enhancing the number and the effector function of CD8+ T cells in KRASLA2 mice model and the LLC1 xenograft. Our findings suggest that PLB exerts potent antitumor activity against NSCLC in vitro and in vivo through ARF1 downregulation and induction of antitumor immune response, indicating that PLB is a new novel therapeutic candidate for the treatment of patients with NSCLC.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Antineoplásicos Fitogênicos/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftoquinonas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Ativação Linfocitária/efeitos dos fármacos , Camundongos Nus , Naftoquinonas/farmacologia , Transplante de Neoplasias
20.
Cancer Lett ; 515: 36-48, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052328

RESUMO

Upregulated expression of immune checkpoint molecules correlates with exhausted phenotype and impaired function of cytotoxic T cells to evade host immunity. By disrupting the interaction of PD-L1 and PD1, immune checkpoint inhibitors can restore immune system function against cancer cells. Growing evidence have demonstrated apigenin and luteolin, which are flavonoids abundant in common fruits and vegetables, can suppress growth and induce apoptosis of multiple types of cancer cells with their potent anti-inflammatory, antioxidant and anticancer properties. In this study, the effects and underlying mechanisms of luteolin, apigenin, and anti-PD-1 antibody combined with luteolin or apigenin on the PD-L1 expression and anti-tumorigenesis in KRAS-mutant lung cancer were investigated. Luteolin and apigenin significantly inhibited lung cancer cell growth, induced cell apoptosis, and down-regulated the IFN-γ-induced PD-L1 expression by suppressing the phosphorylation of STAT3. Both luteolin and apigenin showed potent anti-cancer activities in the H358 xenograft and Lewis lung carcinoma model in vivo, and the treatment with monoclonal PD1 antibody enhanced the infiltration of T cells into tumor tissues. Apigenin exhibited anti-tumor activity in Genetically engineered KRASLA2 mice. In conclusion, both apigenin and luteolin significantly suppressed lung cancer with KRAS mutant proliferation, and down-regulated the IFN-γ induced PD-L1 expression. Treatment with the combination of PD-1 blockade and apigenin/luteolin has a synergistic effect and might be a prospective therapeutic strategy for NSCLC with KRAS-mutant.


Assuntos
Apigenina/farmacologia , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Luteolina/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Interferon gama/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA