Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 344: 123344, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215869

RESUMO

Nutrient enrichment, such as nitrogen (N) and phosphorus (P), typically affects nitrous oxide (N2O) emissions in terrestrial ecosystems, predominantly via microbial nitrification and denitrification processes in the soil. However, the specific impact of soil property and microbial community alterations under N and P enrichment on grassland N2O emissions remains unclear. To address this, a field experiment was conducted in an alpine meadow of the northeastern Qinghai-Tibetan Plateau. This study aimed to unravel the mechanisms underlying N and P enrichment effects on N2O emissions by monitoring N2O fluxes, along with analyzing associated microbial communities and soil physicochemical properties. We observed that N enrichment individually or in combination with P enrichment, escalated N2O emissions. P enrichment dampened the stimulatory effect of N enrichment on N2O emissions, indicative of an antagonistic effect. Structural equation modeling (SEM) revealed that N enrichment enhanced N2O emissions through alterations in fungal community composition and key soil physicochemical properties such as pH, ammonium nitrogen (NH4+-N), available phosphorus (AP), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN)). Notably, our findings demonstrated that N2O emissions were significantly more influenced by fungal activities, particularly genera like Fusarium, rather than bacterial processes in response to N enrichment. Overall, the study highlights that N enrichment intensifies the role of fungal attributes and soil properties in driving N2O emissions. In contrast, P enrichment exhibited a non-significant effect on N2O emissions, which highlights the critical role of the fungal community in N2O emissions responses to nutrient enrichments in alpine grassland ecosystems.


Assuntos
Microbiota , Micobioma , Solo , Pradaria , Microbiologia do Solo , Nitrogênio , Óxido Nitroso/análise , Fósforo
2.
Adv Sci (Weinh) ; 11(2): e2304146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010981

RESUMO

Conversion-type electrodes offer a promising multielectron transfer alternative to intercalation hosts with potentially high-capacity release in batteries. However, the poor cycle stability severely hinders their application, especially in aqueous multivalence-ion systems, which can fundamentally impute to anisotropic ion diffusion channel collapse in pristine crystals and irreversible bond fracture during repeated conversion. Here, an amorphous bismuth sulfide (a-BS) formed in situ with unprecedentedly self-controlled moderate conversion Cu2+ storage is proposed to comprehensively regulate the isotropic ion diffusion channels and highly reversible bond evolution. Operando synchrotron X-ray diffraction and substantive verification tests reveal that the total destruction of the Bi─S bond and unsustainable deep alloying are fully restrained. The amorphous structure with robust ion diffusion channels, unique self-controlled moderate conversion, and high electrical conductivity discharge products synergistically boosts the capacity (326.7 mAh g-1 at 1 A g-1 ), rate performance (194.5 mAh g-1 at 10 A g-1 ), and long-lifespan stability (over 8000 cycles with a decay rate of only 0.02 ‰ per cycle). Moreover, the a-BS Cu2+ ‖Zn2+ hybrid ion battery can well supply a stable energy density of 238.6 Wh kg-1 at 9760 W kg-1 . The intrinsically high-stability conversion mechanism explored on amorphous electrodes provides a new opportunity for advanced aqueous storage.

3.
ACS Nano ; 17(19): 19144-19154, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772918

RESUMO

Electronic structure defines the conductivity and ion absorption characteristics of a functional electrode, significantly affecting the charge transfer capability in batteries, while it is rarely thought to be involved in mesoscopic volume and diffusion kinetics of the host lattice for promoting ion storage. Here, we first correlate the evolution in electronic structure of the Mo6S8 cathode with the ability to bound volume expansion and accelerate diffusion kinetics for high-performance aqueous Cu2+ storage. Operando synchrotron energy-dispersive X-ray absorption spectroscopy reveals that accumulative delocalized Mo 4d electrons enhance the Mo-Mo interaction with distinctly contracting and uniformizing Mo6 clusters during the reduction of Mo6S8, which potently restrain lattice expansion and release space to promote Cu2+ diffusion kinetics. Operando synchrotron X-ray diffraction and comprehensive characterizations further validate the structural and electrochemical properties induced by the Cu2+ intercalation electronic structure, endowing the Mo6S8 cathode a high specific capacity with small volume expansion, fast ions diffusion, and long-term cycling stability.

4.
Adv Mater ; 35(48): e2305087, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572369

RESUMO

High-energy metal anodes for large-scale reversible batteries with inexpensive and nonflammable aqueous electrolytes promise the capability of supporting higher current density, satisfactory lifetime, nontoxicity, and low-cost commercial manufacturing, yet remain out of reach due to the lack of reliable electrode-electrolyte interphase engineering. Herein, in situ formed robust interphase on copper metal electrodes (CMEs) induced by a trace amount of potassium dihydrogen phosphate (0.05 m in 1 m CuSO4 -H2 O electrolyte) to fulfill all aforementioned requirements is demonstrated. Impressively, an unprecedented ultrahigh-speed copper plating/stripping capability is achieved at 100 mA cm-2  for over 12 000 cycles, corresponding to an accumulative areal capacity up to tens of times higher than previously reported CMEs. The use of solid-electrolyte interface-protection strategy brings at least an order of magnitude improvement in cycling stability for symmetric cells (Cu||Cu, 2800 h) and full batteries with CMEs using either sulfur cathodes (S||Cu, 1000 cycles without capacity decay) or zinc anodes (Cu||Zn with all-metal electrodes, discharge voltage ≈1.02 V). The comprehensive analysis reveals that the hydrophilic phosphate-rich interphase nanostructures homogenize copper-ion deposition and suppress nucleation overpotential, enabling dendrite-free CMEs with sustainability and ability to tolerate unusual-high power densities. The findings represent an elegant forerunner toward the promising goal of metal electrode applications.

5.
ACS Nano ; 17(7): 6497-6506, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36975102

RESUMO

Exploring stable and durable cathodes for cost-effective reversible aqueous batteries is highly desirable for grid-scale energy storage applications, but significant challenges remain. Herein, we disclosed an ultrastable Cu2+ intercalation chemistry in mass-produced exfoliated NbS2 nanosheets to build ultralong lifespan aqueous batteries with cost advantages. Anisotropic interplanar expansion of NbS2 lattices balanced dynamic Cu2+ incorporation and the highly reversible redox reaction of Nb4+/Nb(4-δ)+ couple were illuminated by operando synchrotron X-ray diffraction and energy dispersive X-ray absorption spectroscopy, affording an extraordinary capacity of approximately 317 mAh g-1 at 1 A g-1 and a good stability of 92.2% capacity retention after 40000 cycles at 10 A g-1. Impressively, a budget NbS2||Fe hybrid ion cell involving an aqueous electrolyte/Fe-metal anode is established and provides a reliable energy supply of 225.4 Wh kg-1 at 750 W kg-1, providing insights for building advanced aqueous battery systems for large-scale applications.

6.
Adv Mater ; 35(9): e2209322, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36482793

RESUMO

Pursuing conversion-type cathodes with high volumetric capacity that can be used in aqueous environments remains rewarding and challenging. Tellurium (Te) is a promising alternative electrode due to its intrinsic attractive electronic conductivity and high theoretical volumetric capacity yet still to be explored. Herein, the kinetically/thermodynamically co-dominat copper-tellurium (Cu-Te) alloying phase-conversion process and corresponding oxidation failure mechanism of tellurium are investigated using in situ synchrotron X-ray diffraction and comprehensive ex situ characterization techniques. By virtue of the fundamental insights into the tellurium electrode, facile and precise electrolyte engineering (solvated structure modulation or reductive antioxidant addition) is implemented to essentially tackle the dramatic capacity loss in tellurium, affording reversible aqueous Cu-Te conversion reaction with an unprecedented ultrahigh volumetric capacity of up to 3927 mAh cm-3 , a flat long discharge plateau (capacity proportion of ≈81%), and an extraordinary level of capacity retention of 80.4% over 2000 cycles at 20 A g-1 of which lifespan thousand-fold longer than Cu-Te conversion using CuSO4 -H2 O electrolyte. This work paves a significant avenue for expanding high-performance conversion-type cathodes toward energetic aqueous multivalent-ion batteries.

7.
Front Microbiol ; 13: 1036451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406385

RESUMO

The alpine meadow on the Qinghai-Tibetan Plateau, which is susceptible to global climate change and human activities, is subject to nutrient addition such as nitrogen (N) and phosphorus (P) to enhance soil available nutrients and ecosystem productivity. Soil bacterial community partly drivers the effects of nutrient additions on ecosystem processes, whereas the factors influencing N and P additions on bacterial community in alpine meadows are not well documented. We conducted a N and P addition experiment in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau with four treatments: untreated control (CK), N addition (N), P addition (P), and NP addition (NP). We employed a high-throughput Illumina Miseq sequencing technology to investigate the response of soil bacterial community to short-term N and P additions. N and P additions decreased soil bacterial richness (OTU numbers and Chao 1 index), and P addition decreased soil bacterial diversity (Shannon and Simpson indices). N addition directly induced the change of soil N H 4 + - N , and decreased plant diversity. The N and P additions reduced soil bacterial community diversity, whose response was independent with plant diversity. Additionally, nutrient additions altered soil bacterial community composition, which were highly correlated with soil properties (i.e. pH, N H 4 + - N , and TP) as shown by RDA. Consistently, structural equation modeling results revealed that N addition indirectly acted on soil bacterial community through altering soil available nutrients and pH, while P addition indirectly affected bacterial community by increasing soil P availability. These findings imply that more attention should be paid to soil properties in regulating belowground biodiversity process in alpine meadows under future environmental change scenario.

8.
Front Plant Sci ; 13: 1044173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407610

RESUMO

Temperature and precipitation are expected to increase in the forthcoming decades in the northeastern Qinghai-Tibetan Plateau, with uncertain effects of their interaction on plant and soil carbon:nitrogen:phosphorus (C:N:P) stoichiometry in alpine ecosystems. A two-year field experiment was conducted to examine the effects of warming, precipitation increase, and their interaction on soil and plant C:N:P stoichiometry at functional groups and community level in an alpine meadow. Warming increased aboveground biomass of legumes and N:P ratios of grasses and community, but did not affect soil C:N:P stoichiometry. The piecewise structural equation model (SEM) indicated that the positive effect of warming on community N:P ratio was mainly resulted from its positive influence on the aboveground biomass of functional groups. Precipitation increase reduced C:N ratios of soil, grasses, and community, indicating the alleviation in soil N-limitation and the reduction in N use efficiency of plant. SEM also demonstrated the decisive role of grasses C:N:P stoichiometry on the response of community C:N:P stoichiometry to precipitation increase. The interaction of warming and precipitation increase did not alter plant community and soil, N:P and C:P ratios, which was resulting from their antagonistic effects. The stable soil and plant community C:N:P stoichiometry raised important implications that the effect of warming was offset by precipitation increase. Our study highlights the importance of considering the interaction between warming and precipitation increase when predicting the impacts of climate change on biogeochemical cycles in alpine meadow ecosystems.

9.
ACS Nano ; 16(8): 12095-12106, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35912958

RESUMO

Engineering multifunctional superstructure cathodes to conquer the critical issue of sluggish kinetics and large volume changes associated with divalent Zn-ion intercalation reactions is highly desirable for boosting practical Zn-ion battery applications. Herein, it is demonstrated that a MoS2/C19H42N+ (CTAB) superstructure can be rationally designed as a stable and high-rate cathode. Incorporation of soft organic CTAB into a rigid MoS2 host forming the superlattice structure not only effectively initiates and smooths Zn2+ transport paths by significantly expanding the MoS2 interlayer spacing (1.0 nm) but also endows structural stability to accommodate Zn2+ storage with expansion along the MoS2 in-plane, while synchronous shrinkage along the superlattice interlayer achieves volume self-regulation of the whole cathode, as evidenced by in situ synchrotron X-ray diffraction and substantial ex situ characterizations. Consequently, the optimized superlattice cathode delivers high-rate performance, long-term cycling stability (∼92.8% capacity retention at 10 A g-1 after 2100 cycles), and favorable flexibility in a pouch cell. Moreover, a decent areal capacity (0.87 mAh cm-2) is achieved even after a 10-fold increase of loading mass (∼11.5 mg cm-2), which is of great significance for practical applications. This work highlights the design of multifunctional superlattice electrodes for high-performance aqueous batteries.

10.
ACS Nano ; 15(9): 14766-14775, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34432437

RESUMO

Aqueous zinc batteries (AZBs) are considered promising candidates for large-scale energy storage systems because of their low cost and high safety. However, currently developed AZB cathodes always suffer from the intense charge repulsion of multivalent-ion and complex multiphase electrochemistry, resulting in an insufficient cycling life and impracticable high-sloping discharge profile. Herein, we found that the synthesized ultrathin Bi2O2Se nanosheets can effectively activate stable protons storage in AZBs rather than large zinc ions. This proton-dominated cathode provides an ultraflat discharge plateau (72% capacity proportion) and exhibits long-term cyclability as 90.64% capacity retention after 2300 cycles at 1 A g-1. Further in situ synchrotron X-ray diffraction, ex situ X-ray photoelectronic spectroscopy, and density functional theory confirm the energy storage mechanism regarding the highly reversible proton insertion/extraction process. Benefiting from the proton-dominated fast dynamics, reliable energy supply (>81.5% discharge plateau capacity proportion) is demonstrated at a high rate of up to 10 A g-1 and in the frozen electrolyte below -15 °C. This work provides a potential design of high-performance electrode materials for AZBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA