Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 142(Pt A): 113088, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244899

RESUMO

Silica-induced pulmonary fibrosis is an irreversible and progressive lung disease with limited treatments available. In this work, FDA-approved cannabidiol (CBD) was studied for its potential medical use in silicosis. In silicosis female C57BL/6 mice model, oral CBD or pirfenidone (PFD) on day 1 after intratracheal drip silica (150 mg/mL) and continued for 42 days. Lung inflammatory and fibrotic changes were studied using ELISA kits, H&E staining and Masson staining. Osteopontion (OPN) and α-smooth muscle actin (α-SMA) expression in lung tissues was determined using immunohistochemical staining. The results indicated that CBD attenuated silica-induced pulmonary inflammation and fibrosis. Human myeloid leukemia mononuclear cells (THP-1) were treated with silica (200 µg/mL) to induce cell damage, then CBD (10 µM, 20 µM) and PFD (100 µM) were incubated. In vitro experiments showed that CBD can effectively reduce the expression of NLRP3 inflammasome in THP-1 cells and subsequently block silica-stimulated transformation of fibromuscular-myofibroblast transition (FMT) by culturing human embryonic lung fibroblasts (MRC-5) in conditioned medium of THP-1 cells. Therefore, CBD exhibited the potential therapy for silicosis through inhibiting the silica-induced pulmonary inflammation and fibrosis via the NLRP3/TGF-ß1/Smad2/3 signaling pathway.

2.
Infect Drug Resist ; 17: 1231-1242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560705

RESUMO

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a cause of staph infection that is difficult to treat because of resistance to some antibiotics. A recent study indicated that diarylurea ZJ-2 is a novel antibacterial agent against multi-drug resistant Enterococcus faecium. In this work, we refined the bactericidal mechanism of ZJ-2 as a peptidoglycan (PG) hydrolase by affecting AtlA-mediated PG homeostasis. Methods: A wild-type strain (WT) and a mutant strain (ΔatlA) were used to investigate the effects of ZJ-2 on the cell wall, PG, and autolysin regulatory system by antimicrobial susceptibility testing, hemolytic toxin assay, microanalysis, autolysis assay, qRT-PCR, ELISA and mouse model of pneumonia. Results: The results revealed that ZJ-2 down-regulated the expression of genes related to peptidoglycan hydrolase (PGH) (sprX, walR, atlA, and lytM), and reduced the levels of PG, muramyl dipeptide (MDP), cytokines, and hemolytic toxin, while ΔatlA interfered with the genes regulation and PG homeostasis. In the mouse MRSA pneumonia model, the same trend was observed in the nucleotide oligomerization domain protein 2 (NOD2) and relative proinflammatory factors. Conclusion: ZJ-2 may act as a novel inhibitor of PG hydrolyse, disrupting autolysin-mediated PG homeostasis, and reducing inflammation by down-regulating the MDP-NOD2 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA