Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(9): 3445-3450, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34505501

RESUMO

Accurate single virus detection is critical for disease diagnosis and early prevention, especially in view of current pandemics. Numerous detection methods have been proposed with the single virus sensitivity, including the optical approaches and immunoassays. However, few of them hitherto have the capability of both trapping and detection of single viruses in the microchannel. Here, we report an optofluidic potential well array to trap nanoparticles stably in the flow stream. The nanoparticle is bound with single viruses and fluorescence quantum dots through an immunolabeling protocol. Single viruses can be swiftly captured in the microchannel by optical forces and imaged by a camera. The number of viruses in solution and on each particle can be quantified via image processing. Our method can trap and detect single viruses in the 1 mL serum or water in 2 h, paving an avenue for the advanced, fast, and accurate clinical diagnosis, as well as the study of virus infectivity, mutation, drug inhibition, etc.


Assuntos
Micromanipulação , Vírus , Micromanipulação/instrumentação , Vírus/isolamento & purificação
2.
Adv Photonics Res ; 2(4): 2000150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33786535

RESUMO

The current outbreak of the coronavirus disease-19 (COVID-19) pandemic worldwide has caused millions of fatalities and imposed a severe impact on our daily lives. Thus, the global healthcare system urgently calls for rapid, affordable, and reliable detection toolkits. Although the gold-standard nucleic acid amplification tests have been widely accepted and utilized, they are time-consuming and labor-intensive, which exceedingly hinder the mass detection in low-income populations, especially in developing countries. Recently, due to the blooming development of photonics, various optical chips have been developed to detect single viruses with the advantages of fast, label-free, affordable, and point of care deployment. Herein, optical approaches especially in three perspectives, e.g., flow-free optical methods, optofluidics, and surface-modification-assisted approaches, are summarized. The future development of on-chip optical-detection methods in the wave of emerging new ideas in nanophotonics is also briefly discussed.

3.
ACS Sens ; 5(8): 2448-2456, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32666782

RESUMO

The great advances in silicon photonic-sensing technology have made it an attractive platform for wide sensing applications. However, most silicon photonic-sensing platforms suffer from high susceptibility to the temperature fluctuation of an operating environment. Additional complex and costly chemical signal-enhancement strategies are usually required to improve the signal-to-noise ratio (SNR). Here, a biotoxoid photonic sensor that is resistant to temperature fluctuation has been demonstrated. This novel sensor consists of a ring resonator coupled to a Mach-Zehnder interferometer (MZI) readout unit. Instead of using costly wavelength interrogation, our photonic sensor directly measures the light intensity ratio between the two output ports of MZI. The temperature dependence (TD)-controlling section of the MZI is used to eliminate the adverse effects of ambient temperature fluctuation. The simulation and experimental results show a linear relationship between the interrogation function and the concentration of an analyte under operation conditions. The thermal drift of the proposed sensor is just 0.18%, which is a reduction of 567-fold for chemical sensing and 28-fold for immuno-biosensing compared to the conventional single-ring resonator. The SNR increases from 6.85 to 19.88 dB within a 2 °C temperature variation. The high SNR optical sensor promises great potential for amplification-free detection of nucleic acids and other biomarkers.


Assuntos
Interferometria , Óptica e Fotônica , Fótons , Silício , Temperatura
4.
Nano Lett ; 20(7): 5193-5200, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574502

RESUMO

Optical tweezers are versatile tools capable of sorting microparticles, yet formidable challenges are present in the separation of nanoparticles smaller than 200 nm. The difficulties arise from the controversy on the requirement of a tightly focused light spot in order to create strong optical forces while a large area is kept for the sorting. To overcome this problem, we create a near-field potential well array with connected tiny hotspots in a large scale. This situation can sort nanoparticles with sizes from 100 to 500 nm, based on the differentiated energy depths of each potential well. In this way, nanoparticles of 200, 300, and 500 nm can be selectively trapped in this microchannel by appropriately tuning the laser power. Our approach provides a robust and unprecedented recipe for optical trapping and separation of nanoparticles and biomolecules, such that it presents a huge potential in the physical and biomedical sciences.

5.
ACS Nano ; 13(10): 12070-12080, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31585042

RESUMO

Current particle sorting methods such as microfluidics, acoustics, and optics focus on exploiting the differences in the mass, size, refractive index, or fluorescence staining. However, there exist formidable challenges for them to sort label-free submicron particles with similar volume and refractive index yet distinct shapes. In this work, we report an optofluidic nanophotonic sawtooth array (ONSA) that generates sawtooth-like light fields through light coupling, paving the physical foundation for shape-selective sieving. Submicron particles interact with the coupled hotspots which impose different optical torques on the particles according to their shapes. Unstained S. aureus and E. coli are used as a model system to demonstrate this shape-selective sorting mechanism based on the torque-induced body dynamics, which was previously unattainable by other particle sorting technologies. More than 95% of S. aureus is retained within ONSA, while more than 97% of E. coli is removed. This nanophotonic chip offers a paradigm shift in shape-selective sorting of submicron particles and expands the boundary of optofluidics-based particle manipulation.


Assuntos
Lasers , Microfluídica/métodos , Nanopartículas/química , Óptica e Fotônica/métodos , Escherichia coli/citologia , Luz , Staphylococcus aureus/citologia
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 666-669, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440484

RESUMO

The detection of microorganisms is important in numerous applications such as water quality monitoring, blood analysis, and food testing. The conventional detection methods are tedious and labour-intensive. Establish methods involve culturing, counting and identification of the pathogen by an experienced technician which typically can take several days. The use of opto-fluidic technology to capture microorganism images offers 0 route to reduce the overall assay time. However, the detection still requires a trained technician. This paper proposes an image processing method that can be used to classify microorganism images captured by an opto-fluidic set up in an automatic manner. The proposed algorithm incorporates some of the features used in other microorganism image detection methods and proposes two new features-Entropy of Histogram of Oriented Gradients (HOG) and the filtered intensities. In addition, we propose to apply the minimal-Redundancy-Maximal-Relevance (mRMR) criterion to select and rank these features. The probability and joint probability distribution functions of the mRMR are estimated using a Gaussian model and the Kernel Density Estimation model. The performance of the proposed method was validated using SVM and data collected from an experimental setup. The results show that our proposed method outperforms existing methods and is capable of achieving a classification accuracy up to 95.8%.


Assuntos
Bactérias/classificação , Cryptosporidium/isolamento & purificação , Giardia/isolamento & purificação , Processamento de Imagem Assistida por Computador/métodos , Máquina de Vetores de Suporte , Algoritmos
7.
Sci Adv ; 4(1): eaao0773, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326979

RESUMO

The past two decades have witnessed the revolutionary development of optical trapping of nanoparticles, most of which deal with trapping stiffness larger than 10-8 N/m. In this conventional regime, however, it remains a formidable challenge to sort out sub-50-nm nanoparticles with single-nanometer precision, isolating us from a rich flatland with advanced applications of micromanipulation. With an insightfully established roadmap of damping, the synchronization between optical force and flow drag force can be coordinated to attempt the loosely overdamped realm (stiffness, 10-10 to 10-8 N/m), which has been challenging. This paper intuitively demonstrates the remarkable functionality to sort out single gold nanoparticles with radii ranging from 30 to 50 nm, as well as 100- and 150-nm polystyrene nanoparticles, with single nanometer precision. The quasi-Bessel optical profile and the loosely overdamped potential wells in the microchannel enable those aforementioned nanoparticles to be separated, positioned, and microscopically oscillated. This work reveals an unprecedentedly meaningful damping scenario that enriches our fundamental understanding of particle kinetics in intriguing optical systems, and offers new opportunities for tumor targeting, intracellular imaging, and sorting small particles such as viruses and DNA.

8.
Neurotoxicology ; 30(2): 214-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19135476

RESUMO

Organophosphate (OP)-containing pesticides are widely used worldwide for domestic and industrial purposes. Studies on acute and chronic exposure to OPs have revealed numerous health effects attributed mainly to acetylcholinesterase (AChE) inhibition. The enzyme human serum paraoxonase (PON1) is involved in the detoxification of OP compounds. PON1 polymorphisms have been shown to affect susceptibility to OP exposure. We studied the effect of OP exposure on pest control workers and assessed the distribution of two common PON1 polymorphisms in our local population. The exposed group consisted of 103 workers from various pest control companies under the Singapore Pest Management Association while the 91 unexposed workers were from a lead stabilizer factory. For all workers, the mean age was 36.9 (20-70) years and the ethnic distribution was 38.1% Chinese, 44.3% Malay and 17.5% Indian. The mean+/-S.D. exposure duration among the pesticide workers was 10.4+/-8.4 years. The mean+/-S.D. RBC cholinesterase level was 18436.2+/-2078U/L and 18079.6+/-1576U/L for the exposed and unexposed groups, respectively (p=0.216). The mean+/-S.D. serum pseudocholinesterase was 11028.4+/-2867.4U/L and 9433.6+/-2022.6U/L in the exposed and unexposed groups, respectively (p<0.0001). Mean paraoxonase activity was similar among Chinese and Malays (266.5 and 266.3U/L, respectively) whereas that of the Indians was significantly lower (165.6U/L). Our study showed that cholinesterase levels among the exposed were not lower than those in the unexposed group. PON1 polymorphisms differed among ethnic groups, implying that ethnicity could be an important surrogate for identifying susceptible groups in case of OP exposure. Although OP poisoning is rare among occupationally exposed workers in Singapore, this information is useful for other developing countries that have large populations of Chinese, Malays and Indians where OP exposure could be very high especially in agricultural settings.


Assuntos
Arildialquilfosfatase/genética , Etnicidade/etnologia , Etnicidade/genética , Exposição Ocupacional , Organofosfatos/efeitos adversos , Polimorfismo Genético/genética , Acetilcolinesterase/sangue , Adulto , Idoso , Arildialquilfosfatase/sangue , Povo Asiático/etnologia , Povo Asiático/genética , Estudos Transversais , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/etnologia , Humanos , Índia/epidemiologia , Índia/etnologia , Malásia/epidemiologia , Malásia/etnologia , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/análise , Organofosfatos/sangue , Singapura/epidemiologia , Singapura/etnologia , Adulto Jovem
9.
Biomed Microdevices ; 8(2): 167-76, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16688576

RESUMO

A microfluidic biochip for conducting an array of polymerase chain reaction (PCR) simultaneously was fabricated to understand the microfluidic loading process of PCR solution into microfabricated glass reaction chambers. The geometrical factors of the microfluidic structure, including the shape and depth of the microchamber, shape and size of the microchannels were investigated on the formation of air bubbles trapped within the microchamber during the PCR solution loading process. Furthermore, the effects of surface properties of the microfluidic structure, including hydrophilicity of the microchamber and inlet channel, and hydrophobicity of the outlet channel, on the loading of PCR solution, especially on the formation of air bubbles were studied. As a result, the surface wetting property of the microchamber was found to be the main reason for the formation of the air bubbles inside the microchamber during the loading of PCR solution in the biochips. A solution to avoid the air trapping has been proposed and investigated.


Assuntos
DNA/genética , DNA/isolamento & purificação , Análise de Injeção de Fluxo/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Manejo de Espécimes/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA