Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 162: 213930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38909600

RESUMO

An estimated 1.7 million fatalities and 150 million cases worldwide are attributed to fungal infections annually, that are in rise due to immunocompromised patient population. The challenges posed by traditional treatments can be addressed with the help of nanotechnology advancements. In this study, Co, Cu, and Ag-were doped into silica nanoparticles. Then the synthesized monometallic silica nanohybrids were combined to formulate heterometallic silica nanohybrids, characterized structurally and morphologically, compared, and evaluated for antifungal activity based on their individual and synergistic activity. The antifungal assays were conducted by using ATCC cultures of Candida albicans and QC samples of Trichophyton rubrum, Microsporum gypseum, and Aspergillus niger. The MIC (ranging from 49.00 to 1560.00 µg/mL), MFC (ranging from 197.00 to 3125.00 µg/mL), IC50 values (ranging from 31.10 to 400.80 µg/mL), and FICI of nanohybrids were determined and compared. Moreover, well diffusion assay was performed. ABTS assay and DPPH assay were conducted to investigate the radical scavenging activity (RSA) of nanohybrids. SEM analysis clearly evidenced the structural deformations of each fungal cells and spores due to the treatment with trimetallic nanohybrid. According to the results, the trimetallic silica nanohybrids exhibited the most powerful synergistic RSA and the most effective antifungal activity, compared to the bimetallic silica nanohybrids.


Assuntos
Antifúngicos , Candida albicans , Testes de Sensibilidade Microbiana , Dióxido de Silício , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Candida albicans/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Nanopartículas/química , Microsporum/efeitos dos fármacos , Sinergismo Farmacológico , Cobre/química , Cobre/farmacologia , Prata/farmacologia , Prata/química , Arthrodermataceae
2.
RSC Adv ; 14(26): 18536-18552, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38860242

RESUMO

Bacterial infections and antibiotic resistance have posed a severe threat to public health in recent years. One emerging and promising approach to this issue is the photocatalytic sterilization of nanohybrids. By utilizing ZnO photocatalytic sterilization, the drawbacks of conventional antibacterial treatments can be efficiently addressed. This study examines the enhanced photocatalytic sterilizing effectiveness of Fe-doped ZnO nanoparticles (Fe-ZnO nanohybrids) incorporated into polymer membranes that are active in visible light. Using the co-precipitation procedure, Fe-ZnO nanohybrids (Fe x Zn100-x O) have been generated using a range of dopant ratios (x = 0, 3, 5, 7, and 10) and characterized. The ability to scavenge free radicals was assessed and the IC50 value was calculated using the DPPH test at different catalytic concentrations. PXRD patterns showed a hexagonal wurtzite structure, which indicated that the particle size of the nanohybrid decreased as the dopant concentration rose. It was demonstrated by UV-vis diffuse reflectance experiments that the band gap of the nanohybrid decreased (redshifted) with Fe doping. The photocatalytic activity under sunlight increased steadily to 87% after Fe was added as a dopant. The Fe 5%-ZnO nanohybrid exhibited the lowest IC50 value of 81.44 µg mL-1 compared to ZnO, indicating the highest radical scavenging activity and the best antimicrobial activity. The Fe 5%-ZnO nanohybrid, which is proven to have the best photocatalytic sterilization activity, was then incorporated into a cellulose acetate polymer membrane by electrospinning. Disc diffusion assay confirmed the highest antimicrobial activity of the Fe 5%-ZnO nanohybrid incorporated electrospun membrane against Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 10231) under visible light. As a result, Fe 5%-ZnO nanofiber membranes have the potential to be employed as self-sterilizing materials in healthcare settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA