Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1942): 20202375, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434467

RESUMO

The order Diptera (true flies) are named for their two wings because their hindwings have evolved into specialized mechanosensory organs called halteres. Flies use halteres to detect body rotations and maintain stability during flight and other behaviours. The most recently diverged dipteran monophyletic subsection, the Calyptratae, is highly successful, accounting for approximately 12% of dipteran diversity, and includes common families like house flies. These flies move their halteres independently from their wings and oscillate their halteres during walking. Here, we demonstrate that this subsection of flies uses their halteres to stabilize their bodies during takeoff, whereas non-Calyptratae flies do not. We find that flies of the Calyptratae are able to take off more rapidly than non-Calyptratae flies without sacrificing stability. Haltere removal decreased both velocity and stability in the takeoffs of Calyptratae, but not other flies. The loss of takeoff velocity following haltere removal in Calyptratae (but not other flies) is a direct result of a decrease in leg extension speed. A closely related non-Calyptratae species (D. melanogaster) also has a rapid takeoff, but takeoff duration and stability are unaffected by haltere removal. Haltere use thus allows for greater speed and stability during fast escapes, but only in the Calyptratae clade.


Assuntos
Dípteros , Animais , Drosophila melanogaster , Voo Animal , Mecanorreceptores , Caminhada , Asas de Animais
2.
Proc Biol Sci ; 285(1887)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232160

RESUMO

During locomotion, animals rely on multiple sensory modalities to maintain stability. External cues may guide behaviour, but they must be interpreted in the context of the animal's own body movements. Mechanosensory cues that can resolve dynamic internal and environmental conditions, like those from vertebrate vestibular systems or other proprioceptors, are essential for guided movement. How do afferent proprioceptor neurons transform movement into a neural code? In flies, modified hindwings known as halteres detect forces produced by body rotations and are essential for flight. However, the mechanisms by which haltere neurons transform forces resulting from three-dimensional body rotations into patterns of neural spikes are unknown. We use intracellular electrodes to record from haltere primary afferent neurons during a range of haltere motions. We find that spike timing activity of individual neurons changes with displacement and propose a mechanism by which single neurons can encode three-dimensional haltere movements during flight.


Assuntos
Neurônios Aferentes/fisiologia , Sarcofagídeos , Asas de Animais/inervação , Animais , Eletrofisiologia/métodos , Voo Animal , Mecanorreceptores , Movimento
3.
Integr Comp Biol ; 56(5): 865-876, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27413092

RESUMO

The halteres of dipteran insects (true flies) are essential mechanosensory organs for flight. These are modified hindwings with several arrays of sensory cells at their base, and they are one of the characteristic features of flies. Mechanosensory information from the halteres is sent with low latency to wing-steering and head movement motoneurons, allowing direct control of body position and gaze. Analyses of the structure and dynamics of halteres indicate that they experience very small aerodynamic forces but significant inertial forces, including Coriolis forces associated with body rotations. The sensory cells at the base of the haltere detect these forces and allow the fly to correct for perturbations during flight, but new evidence suggests that this may not be their only role. This review will examine our current understanding of how these organs move, encode forces, and transmit information about these forces to the nervous system to guide behavior.


Assuntos
Dípteros/fisiologia , Voo Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Dípteros/anatomia & histologia , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia
4.
Biol Lett ; 11(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26601682

RESUMO

The halteres of flies are mechanosensory organs that provide information about body rotations during flight. We measured haltere movements in a range of fly taxa during free walking and tethered flight. We find a diversity of wing-haltere phase relationships in flight, with higher variability in more ancient families and less in more derived families. Diverse haltere movements were observed during free walking and were correlated with phylogeny. We predicted that haltere removal might decrease behavioural performance in those flies that move them during walking and provide evidence that this is the case. Our comparative approach reveals previously unknown diversity in haltere movements and opens the possibility of multiple functional roles for halteres in different fly behaviours.


Assuntos
Dípteros/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Voo Animal/fisiologia , Mecanorreceptores/fisiologia , Movimento , Filogenia , Caminhada/fisiologia , Asas de Animais/fisiologia
5.
J Exp Biol ; 218(Pt 24): 3950-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26519507

RESUMO

The mechanisms of rhythmic motor pattern generation have been studied in detail in vitro, but the long-term stability and sources of variability in vivo are often not well described. The crab stomatogastric ganglion contains the well-characterized gastric mill (chewing) and pyloric (filtering of food) central pattern generators. In vitro, the pyloric rhythm is stereotyped with little variation, but inter-circuit interactions and neuromodulation can alter both rhythm cycle frequency and structure. The range of variation of activity in vivo is, with few exceptions, unknown. Curiously, although the pattern-generating circuits in vivo are constantly exposed to hormonal and neural modulation, the majority of published data show only the unperturbed canonical motor patterns typically observed in vitro. Using long-term extracellular recordings (N=27 animals), we identified the range and sources of variability of the pyloric and gastric mill rhythms recorded continuously over 4 days in freely behaving Jonah crabs (Cancer borealis). Although there was no evidence of innate daily rhythmicity, a 12 h light-driven cycle did manifest. The frequency of both rhythms increased modestly, albeit consistently, during the 3 h before and 3 h after the lights changed. This cycle was occluded by sensory stimulation (feeding), which significantly influenced both pyloric cycle frequency and structure. This was the only instance where the structure of the rhythm changed. In unfed animals the structure remained stable, even when the frequency varied substantially. So, although central pattern generating circuits are capable of producing many patterns, in vivo outputs typically remain stable in the absence of sensory stimulation.


Assuntos
Braquiúros/fisiologia , Animais , Gânglios dos Invertebrados/fisiologia , Trato Gastrointestinal/inervação , Luz , Masculino , Atividade Motora/fisiologia , Periodicidade , Piloro/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA